SPEKTR

I
сущ. спектр:
1. многоцветная полоса, получающаяся при прохождении светового луча через призму или какую-л. другую преломляющую среду. İşıq spektri световой спектр, spektrin əsas rəngləri основные цвета спектра, spektr zolağı полоса спектра, spektr xətti линия спектра
2. цветная полоса или совокупность цветных линий, получаемая при пропускании излучений раскалённого тела, вещества через особые оптические приборы и зависящая от химического состава и физического состояния этого вещества. Yerin spektri спектр Земли, Ayın spektri спектр Луны, Günəş spektri солнечный спектр, hidrogenin spektri спектр водорода, maqnit spektri физ. магнитный спектр (распределение в пространстве магнитных силовых линий)
II
прил. спектральный. Spektr sıxlığı спектральная плотность
SPAZMOLİTİN
SPEKTRAL
OBASTAN VİKİ
Spektr
Spektr (lat. spectrum lat. specter sözündən — görüntü, ruh) — fizikada işığın monoxromatik (bir rəngli) toplananları çoxluğu. İşıq haqqındakı elmi anlayışlar dərinləşdikcə, bu anlayış elektromaqnit spektrinə də aid edildi. Spektrlərin vizual müşahidəsi üçün istifadə edilən cihaza spektroskop, spektri təsvir edən cihaza isə spektroqraf deyilir. == Tarixi == Elmə bu termini İsaak Nyuton 1671—1672-ci illərdə işığın prizmada sınmasından alınan göy qurşağına oxşayan çoxrəngli zolağı təsvir etmək üçün gətirmişdir. == Ədəbiyyat == Вавилов С. И. Принципы и гипотезы оптики Ньютона. Собрание сочинений. том 3, Москва, Изд-во АН СССР, 1956. Gustav Kirchhoff, Robert Bunsen.
Elektromaqnit spektr
Elektromaqnit spektr və ya optik spektr — elektromaqnit şüalanması tezliklərinin tam diapazonu. Nəzəri olaraq elektromaqnit spektrinin yuxarı və aşağı sərhədləri olmur. O, adətən, loqarifmik şkala vasitəsilə verilir. ITU elektromaqnit spektrində 30 Hs-dən 3000 GHs aralığında 12 diapazon seçdirib. Elektromaqnit spektr işığın analizi ilə alınır. İşığı təşkil edən tezliklər toplusunun tərkibindən asılı olaraq elektromaqnit spektr xətti (diskret), bütöv və mürəkkəb (bütöv oblastlar və onların daxilində yerləşən ayrı-ayrı spektr xətlərindən ibarət sistem) olur. Elektromaqnit spektrin xarakteri işıq mənbəyi və şüalanma mexanizmi ilə müəyyən edilir. İşıq mənbəyi atomdursa, alınan spektr xətti, malekuldursa zolaqlı olur. Qızdırılmış bərk cisim bütöv spektrli işıq şüalandırır. Bu zaman şüalanan işığın intensivliyinin tezliyə görə paylanması Plank düsturu ilə müəyyən olunur.
Optik spektr
Elektromaqnit spektr və ya optik spektr — elektromaqnit şüalanması tezliklərinin tam diapazonu. Nəzəri olaraq elektromaqnit spektrinin yuxarı və aşağı sərhədləri olmur. O, adətən, loqarifmik şkala vasitəsilə verilir. ITU elektromaqnit spektrində 30 Hs-dən 3000 GHs aralığında 12 diapazon seçdirib. Elektromaqnit spektr işığın analizi ilə alınır. İşığı təşkil edən tezliklər toplusunun tərkibindən asılı olaraq elektromaqnit spektr xətti (diskret), bütöv və mürəkkəb (bütöv oblastlar və onların daxilində yerləşən ayrı-ayrı spektr xətlərindən ibarət sistem) olur. Elektromaqnit spektrin xarakteri işıq mənbəyi və şüalanma mexanizmi ilə müəyyən edilir. İşıq mənbəyi atomdursa, alınan spektr xətti, malekuldursa zolaqlı olur. Qızdırılmış bərk cisim bütöv spektrli işıq şüalandırır. Bu zaman şüalanan işığın intensivliyinin tezliyə görə paylanması Plank düsturu ilə müəyyən olunur.
Agent 007: Spektr (film, 2015)
Agent 007: Spektr filmi rejissor Sem Mendes tərəfindən 2015-ci ildə ekranlaşdırılmışdır. Əsas rolları Deniel Kreyq, Kristof Valts və Lea Seydu ifa edirlər. == Məzmun == Keçmişdən gələn şifrəli mesaj nəticəsində Ceyms Bond əvvəlcə Mexikoya və sonra gözəl Lüsiya ilə tanış olacağı Romaya yollanır. Burada Bond "Spektr" adlı gizli bir təşkilatın varlığını aşkar edir. O, bu təşkilatın cinayətlərini üzə çıxarmaq üçün köhnə düşməni Mistr Vaytın qızı Madleni axtarır. Bond təşkilatın içində irəliyə doğru hərəkət etdikcə Frans Oberhauzer və onunlar bağlı heyrətamiz məqamların üstü açılır.
Autizm spektr pozuntulu uşaqlar üçün Bərpa Mərkəzi
Bakının Nizami rayonunda yerləşən Autizm spektr pozuntulu uşaqlar üçün Bərpa Mərkəzi Heydər Əliyev Fondu tərəfindən inşa edilib.. == Tarixi == Autizm spektr pozuntulu uşaqlar üçün Bərpa Mərkəzi 2013-cü ildən fəaliyyət göstərir. Lakin Mərkəzin özünün daimi yerləşdiyi binası olmayıb. 2021-ci il dekabrın 31-də Mərkəzin binası istifadəyə verilib. == Mərkəz haqqında == Bu autizm xəstəliyindən əziyyət çəkən uşaqların intensiv terapiya alması və onların asudə vaxtlarının səmərəli təşkili üçün Mərkəzdə lazımi şərait yaradılıb. Binada sinif, sakitləşdirici, valideyn və uşaqlar üçün psixoloq, yataq və loqoped otaqları, akt və idman zalları var. Qeyd edək ki, xüsusi qayğıya ehtiyacı olan uşaqların təlim-tərbiyəsi, təhsili, asudə vaxtlarının səmərəli təşkili hər zaman Heydər Əliyev Fondunun prioritet istiqamətlərindən olub. Bu gün istifadəyə verilən Mərkəz də bunun gözəl nümunələrindəndir. Mərkəz autizm spektr pozuntuları ilə üzləşmiş şəxslərə zəruri ünsiyyət və həyat bacarıqlarını öyrətmək, onları müstəqil həyata hazırlamaq üçün ailələr ilə işləmək, autizm sahəsində maarifləndirici layihələr həyata keçirmək istiqamətində fəaliyyət göstərir. Mərkəzdə 23 yaşınadək şəxslərin qayğısı ilə müvafiq təlim keçən mütəxəssislər məşğul olurlar.
Alfa-spektrometr
Alfa-spektrometr(A.s) -radioaktiv nüvələrin buraxdığı α-zərrəciklərinin energetik paylanmasını ölçmək üçün cihazdır. Nüvə fizikası inkişafının ilkin mərhələlərində və radioaktivliyin tədqiqində geniş tətbiq olunmuşdur. α-spektrlərin incə quruluşunu tədqiq etmək və α-zərrəciklərin enerjisinə görə nüvələri aşkar etmək üçün tətbiq olunur. Müasir A.-s.-in işi α-zərrəciklərin ionlaşdırıcı xassəsinə (ionlaşma A.-s.), ya da onların maqnit sahəsi ilə qarşılıqlı təsirinə (maqnit A.-s.) əsaslanır. Ayırdetmə qabiliyyəti zəif və işıq qüvvəsi (cismi bucaq) çox böyük olan ionlaşma A.-s.-ləri uzun müddət yaşayan (yarımparçalanma dövrü 106 ildən böyük) və yeni yaranan nüvələri tədqiq etməyə imkan verir. Maqnit A.-s.-də enerji α -zərrəciklərin maqnit sahəsində meylinə görə təyin olunur. İonlaşma kameralarında α-zərrəciklərin enerjisi digər α-zərrəciklərin məlum enerjisi ilə müqayisə olunur. Alfa-spektroskopiya- Ana nüvənin parçalanması ilə yaranan α-zərrəciklərin spektri bala nüvənin müxtəlif səviyyələrinin keçidlərinə uyğun çoxlu monoenergetik xətlərdən ibarətdir. α -zərrəcik spinə malik olmadığından saxlanma qanunlarına uyğun hərəkət miqdarı momentinə görə seçmə qaydaları I=L və cütlük sadə olur. α-zərrəciyin bucaq momenti L aşağıdakı intervalda qiymət ala bilər: α-aktiv nüvələrin buraxdığı α-zərrəciklər axınının enerjisi və intensivliyinin ölçülməsi üçün qazboşalma və yarımkeçirici zərrəcik detektorlarından, həmçinin spektrometrlərdən istifadə olunur.
Atom spektrləri
Atom spektrləri— əgər günəş işığını və ya adi lampa işığını prizmadan keçirərək ekrana yönəltsək, onun üzərində müxətlif rəngli işıq zolaqları yaranacaq. Bu rənglərin hər biri müəyyən konkret dalğa uzunluğuna malikdir. İşığın bu cür spektrlərə ayrılmasına kəsilməz spektr deyilir. Lakin əgər işıq mənbəyi kimi içərisinə qaz halında müəyyən bir element doldurulmuş qaz boşalması borusu istifadə olunarsa, onda qara fonda müxtəlif rəngli xəttlərdən ibarət spektr yaranacaq. Bu spektr atomun buraxma spektri (atom emission spektr) və ya xətti spektr adlanır. Buraxma spektrlərini istənilən maddə üçün almaq mümkündür. Bunun üçün onu hər hansı bir yolla (ondan elektrik cərəyanı buraxmaqla və ya alovda qızdırmaqla) həyəcanlandırmaq lazımdır. Atom spektrləri işıq spektrinin görünən hissəsindən ultrabənövşəyi hissəsinə qədər olan aralığı ehtiva edir. Hər bir maddənin özünəməxsus atom spektri mövcuddur. Məsələn, əgər natrium və onun birləşmələrini alova tutsaq, onda 590 nm dalğa uzunluğuna malik işıq şüası buraxılır və alov sarı rəngə boyanır.
Infraqırmızı spektroskopiya üsulu ilə üzvi maddələrin tədqiqi
İnfraqırmızı spektroskopiya — infraqırmızı şüaların təsiri ilə maddələrin tərkibindəki dəyişikliklərin təyin edilməsində istifadə olunan spektral analiz üsullarından biridir. Hələ 1882–1900-cu illərdə Edvard Festinq 52 birləşmənin "IQ" spektrini almış və müşahidə olunan udmanın bu molekullardakı funksional qruplarla əlaqəsini göstərmişdir. Bu üsulun daha da təkmilləşməsində Amerika fiziki Uilyam Kobelsin böyük əməyi oldu. Hələ 1903-cü ildə o, NaCl prizmasından istifadə edərək yüzlərlə üzvi və qeyri-üzvi maddələrin tam infraqırmızı spektrlərini almışdır. İQ spektroskopiyanın inkişafı İQ interferometrlərinin meydana gəlməsi ilə bağlı olmuşdur ki, bunlar da 70-ci illərdə təkmilləşərək kompüterləşmiş və Furye çevrici ilə təchiz olunmuş halda dünya bazarlarına çıxarılmışdır. Spektrlərdəki ehtizazi və fırlanma dalğa uzunluğu 1–50µ arasındadır. Mineralogiyada və kristalloqrafiyada infraqırmızı spektroskopiya mineral qarışıqlarının kəmiyyət analizi və tutuşdurulması; mineralın quruluşundakı H2O-nun təbiətini müəyyən etmək, onların əmələ gəlməsində bir kriteriya kimi quruluşun nizamlanma dərəcəsini araşdırmaq üçün və başqa hallarda istifadə olunur. Spektroskopiya maddə ilə elektromaqnit şüaların qarşılıqlı təsirini, maddənin struktur quruluşunu və onu təşkil edən atomların və molekulların öyrənilməsidir. Spektroskopiya elektromaqnit şüalanmanın – qamma şüaların, X-şüaların (rentgen şüaları), infraqırmızı şüaların, görünən və ultrabənövşəyi şüaların, mikrodalğanın və radio tezliklərin bütün sahəsini istifadə edir. İnfraqırmızı spektroskopiya spektroskopiyanın bir bölməsidir ki, infraqırmızı diapazonda üzvi və qeyri-üzvi birləşmələrin buraxılma, udulma və əksolunma spektrləri əldə edilir və araşdırılır.
Kütlə spektri
Kütlə spektri- Üzvi maddənin molekul kütləsini və quruluşunu təyin etmək üçündür. == Kütlə spektri cihazının iş prinsipi == Kütlə spektri cihazının iş prinsipi tədqiq olunan maddənin həddindən artıq seyrəkləşdirilmiş buxarlarının güclü elektron seli ilə bombardman edilməsi zamanı əmələ gələn müsbət yüklü qəlpələrin (fraqmentlərin) öyrənilməsi əsaslanır. Elektron selinin təsirinə məruz qalan hər hansı üzvi maddə əmələ gəlməsi mümkün olan müsbət yüklü qəlpələrin hamsımı əmələ gətirir. Müsbət yüklü qəlpələr sürətləndirici lövhələr tərəfindən (onlar ənfi yüklü olur) sürətləndirilir və maqnit vasitəsilə analiz edən kameraya yönəldilir. Onların kütlələri elektrik siqnallarına çevrilib, özüyazan qurğu tərəfindən qeydə alınır. Kütlələlərinə görə alınan “qəlpələrin” təbiəti və onların toplanması ilə tədqiq olunan maddənin quruluşu təyin olunur. == Üstünlüyü == Kütlə spektində ən böyük “qəlpə” həmişə tədqiq olunan maddədən bir elektron qopardıqda əmələ gələn müsbət yüklü ion olur. Buna görə də kütlə spektri maddənin molekul kütləsini təyin etmək üçün ən dəqiq üsuldur. Elektronoqrafik metod da üzvi maddələrin quruluşu haqqında əhəmiyyətli məlumat almağa imkan verir. Bu üsuldan istifadə edərək, elektron dəstəsi vasitəsilə bəzi mürəkəb üzvi molekulların quruluşunu əks etdirmək, onların bir növ şəklini (fotosunu) çəkmək mümkün olmuşdur.
Mass-spektrometriya
Mass-spektrometriya - maddələrin ionlaşmış hissəciklərinin kütləyə görə xüsusi analizatorlarda ayrılmasına əsaslanan fiziki analiz növü. Mass-spektrometriya kütlə spektrlərini, atomların kütlə ədədlərini dəqiqləşdirməyə, yeni izotoplar aşkar etməyə, müxtəlif obyektlərdə izotopların yayılmasını müəyyən etməyə imkan verir. Kütlələrin spektrini qeydə almaq sistemindən asılı olaraq üsul mass-spektroskopiya (işıqlanan ekranda kütlələrin bütün spektrinin alınması) və ya mass-spektroqrafiya (fotoplastinkadan istifadə etdikdə) adlanır. Mass-spektrometriya yeni izotopların identifikasiyası üçün əlverişli üsuldur. Geologiyada süxur, mineral, filiz, sularda element izotoplarının yayılmasının anomal nisbətlərinin tədqiqinin bütün hallarında mass-spektrometriya izotop tədqiqatlarının əsas üsulu kimi istifadə edilir. İzotop tərkibinin variyasiyaları nümunədə radiogen izotopun yığılması, ya da müxtəlif geoloji proseslərinin təsiri, temperatur fərqləri, genezis və b. faktorlarla bağlıdır. Mass-spektrometriya (mass-spektroskopiya, mass-spektroqrafiya, mass-spektrometrik tədqiqat, analiz və.s) ionlaşma zamanı əmələ gələn təcrübə komponentlərinin marağını əks etdirən ionların kütlələrinin enerjiyə olan nisbətini təyin etməyə əsaslanan maddələrin tədqiqat metodudur. Maddənin keyfiyyət identifikasiyasının güclü üsullarından biri olub, kəmiyyəti təyin etməyə də imkan verir. Demək olar ki, mass-spektrometriya — təcrübədə olan molekulun "tərəzidə çəkilməsidir." Bütün mass-spektrometrlər – vakum cihazlarıdır, bir halda ki, ionlar yad molekulların iştirakı zamanı ionlar qeyri-sabitdirlər.
Spektral cihazlar
Spektral cihazlar-müxtəlif uzunluqlu dalğaları yaxşı ayırd edən,spektrin ayrı-ayrı hissələrinin bir-birini örtməsinə imkan verməyən (sanki) cihazlardır.İş prinsipi işığın dispersiya hadisəsinə (prizmalı spektroskoplar) və difraksiyası hadisəsinə(difraksiya qəfəsli spektrometrlər) əsaslanır. Dispersiya hadisəsi-mühitin sındırma əmsalının işığın dalğa uzunluğundan asılı olaraq dəyişməsinə deyilir.Spektr-dispersiya nəticəsindəağ işığın üçüzlü prizmadan keçməsi zamanı yaranan mənzərədir.Spektrdə rənglərin düzülmə ardıcıllığı-qırmızı,narıncı,sarı,yaşıl,mavi,göy və bənövşəyi. Monoxromatik işıq-müəyyən dalğa uzunluguna malik olan işıqdır. Deməli ağ işıq mürəkkəb işıqdır. İnfraqırmızı şüalar-dalğa uzunluğu qırmızı işığın dalğa uzunluğundan böyük olan işıqdır. Ultrabənövşəyi şüalar-dalğa uzunluğu bənövşəyi işığın dalğa uzunluğundan kiçik olan şüalardır. Dispersya hadisəsi birinci dəfə 1606-cı ildə Nyuton tərəfindən müşahidə edilmişdir. Normal dispersiya-dalğa uzunluğu artdıqca sındırma əmsalı azalan dispersyadır. Anomal dispersiya-dalğa uzunluğu artdıqda sındırma əmsalı artan dispersyadır. Spektroqraflar-spektri fotolöhvəyə cəkməyə imkaan verən cihazdır.
Spektrofotometriya
Spektrofotometriya (OBSORBSİON) – spektrin ultrabənövşəyi, görünən və infraqırmızı hissələrinə əsaslanaraq maye və bərk maddələrin fiziki-kimyəvi tədqiqat metodu. Müxtəlif birləşmələrin (komplekslərin, boyaların, analitik reagentlərin və b.) quruluşunu və tərkibini, maddələrin kəmiyyət və keyfiyyətini təyin etmək üçün Spektrofotometriyadən geniş istifadə olunur. Spektrofotometriyada istifadə olunan cihaz spektrofotometr adlanır.
Spektrometr
Spektrometr fiziki hadisənin spektral elementlərini ayırmaq və onları ölçmək üçün istifadə olunan elmi cihazdır. Spektrometr tez-tez spektral komponentlərin bir formada qarışdırıldığı bir fenomenin davamlı dəyişənini ölçən cihazları xarakterizə etmək üçün istifadə olunan termindir. Gözlə görünə bilən işıqda spektrometr parlaq işığı ayıra bilər. Həmçinin, bu cihaz spektr kimi adlanan fərdi dar işıq lentlərini ayırmaq gücünə malikdir. Bir kütlə spektrometr qazda mövcud olan atomların və ya molekulların kütlələrinin spekrini ölçür. İlk spekrometrlər işığı fərdi rənglərə ayırmaq üçün istifadə edilmişdir. Spekrometrlər fizika, astronomiya və kimya üzrə ilk tədqiqatlarda hazırlanmışdır. Spektroskopiyanın kimyəvi tərkibi müəyyən etmək qabiliyyəti onun inkişafına təkan verdi və onun əsas istifadələrindən biri olaraq qalır. Spekrometrlər ulduzların və planetlərin kimyəvi tərkibini analiz etmək üçün astronomiyada istifadə olunur və spekrometrlər kainatın yaranması haqqında məlumat toplayırlar. Spektromerlərə nümunə olaraq atomları, hissəcikləri və molekulları implus, kütlə və yaxud enerji ilə ayıran cihazları göstərmək mümkündür.
Spektroqram
Spektroqram (ing. Spectrogram, rus. Спектрограмма) — akustik siqnalın gücünün tezliklər üzrə zamana görə paylanmasını əyani göstəricisi. İkiölçülü diaqram spektroqramın ən geniş yayılmış təsvir formasıdır: üfüqi oxda zaman, şaquli oxda tezlik göstərilir; üçüncü ölçü konkret zaman anında müəyyən tezlikdə amplitudu göstərməklə şəkildə intensivliklə və ya nöqtənin rəngi ilə təsvir edilir. Sonoqram da adlanır. == Ədəbiyyat == İmamverdiyev Y.N., Suxostat L.V. "Nitq texnologiyaları üzrə terminlərin izahlı lüğəti ", 2015,“İnformasiya Texnologiyaları” nəşriyyatı, 111 səh.
Spektroskopiya
Spektroskopiya maddə ilə elektromaqnit şüalanmasının (elektron spektroskopiya, atom spektroskopiyası və s.) qarşılıqlı təsirinin öyrənilməsidir. Tarixən spektroskopiya görünən işığın dalğa uzunluğuna görə bir prizmadan yayılmasının öyrənilməsi nəticəsində yaranmışdır. Daha sonra, şüalanma enerjisi ilə onun dalğa uzunluğu və ya tezliyi, elektromaqnit spektri də daxil olmaqla hər hansı bir qarşılıqlı təsirinin öyrənilməsi ilə bu anlayış daha geniş yayıldı, həmçinin maddə dalğaları və akustik dalğalar da şüalanma enerjisinin forması hesab oluna bilər. Son dövrlərdə, böyük bir çətinliklə, hətta cazibə dalğaları da Lazer İnterferometri Qravitasiya-Dalğa Rəsədxanası (LIGO) və lazer İnterferometri kontekstində bir spektr ilə əlaqələndirildi. Spektroskopik məlumatlar yayılma spektri ilə (dalğa uzunluğu və ya tezliyi ilə) göstərilir. Spektroskopiya, ilk növbədə elektromaqnit spektrində, fizika, kimya və astronomiya sahələrində əsas tədqiqat vasitəsidir və maddənin tərkibini, fiziki quruluşunu və elektron quruluşunu atom səviyyəsində, molekulyar səviyyədə və makro səviyyədə daha çox araşdırmağa imkan verir. Əhəmiyyətli tətbiqlərdə toxuma analizi və tibbi görüntü sahələrində biotibbi spektroskopiyadan istifadə edilir. == Giriş == Spektroskopiya və spektroqrafiya, şüalanma intensivliyinin ölçülməsini dalğa uzunluğu ilə ifadə etmək üçün istifadə olunan terminlərdir və çox vaxt eksperimental spektroskopik metodları təsvir etmək üçün istifadə olunur. Spektral ölçmə cihazlarına spektrometr, spektrofotometr, spektroqraf və ya spektral analizator deyilir. Gündəlik rənglərin müşahidə edilməsi spektroskopiya ilə əlaqəlidir.
Ultrabənövşəyi spektroskopiya
Ultrabənövşəyi (UF) (elektron) spektroskopiya — (UF-spektroskopiya, ing. near-infrared spectroscopy, NIR) optik spektroskopiyanın bölməsidir, üzvi və qeyri-üzvi birləşmələrin tədqiqatının ən yayılmış fiziki-kimyəvi metodlarından biridir. Ultrabənövşəyi spektroskopiya ultrabənövşəyi sahədə udulma, əks etmə spektrlərinin alınmasını, tədqiqatını və istifadə olunmasını özündə əks etdirir. Üzvi molekulların elektronlarını əsas vəziyyətdən həyəcanlandırılmış vəziyyətə keçirmək üçündür(bağlayıcı orbitaldan yumşaldıcı orbitala). Spektrin ultrabənövşəyi və görünən diapazonunun fotonlarının enerjisi kifayət qədər yüksəkdir (1,7–100 eV və ya təxminən 100-dən 730 nm-a qədər). == İş prinsipi == Bütün üzvi maddələr ultrabənövşəyi sahədə udulur. Bir qayda olaraq, "işçi" sahə intervalı 190–730 nm təşkil edir, əsasən 200-dən 380 nm-a qədər. Prizma və küvetin istehsalı üçün bu sahələrdə optik materiallar şəffafdır. 190 nm-dən (ultrabənövşəyi vakuum) az olan dalğa uzunluğu iş üçün əlverişsizdir, çünki bu sahədə havanın komponentləri olan oksigen və azotu udur. Bu səbəbdən iş üçün xüsusi vakuum kameraları istifadə olunur, bu isə laboratoriya təcrübəsini çətinləşdirir, ancaq tez-tez elə olur ki, qadağan edilmiş zonanın böyük ölçülü dielektriklərinin tədqiqatı əvəzolunmaz olur.
Ultrasəs dalğaları. Akustik siqnal və onun spektri.
Ultrasəs dalğaları — İnsan qulağının eşidə bildiyi 20 kHs tezlikdən böyük tezlikli səs və ya akustik dalğalar. Akustik dalğalar elastiki mühitin zərrəciklərinin yaratdığı rəqslərin mühitdə yayılması və enerji daşımasından ibarətdir. Akustik dalğalar bərk mühitdə, mayelərdə və həm də qazlarda yayılir. Bioloji toxumalar həm elastiki maye mühitə (yumşaq toxumalar), bərk (sümüklər) və qaz mühitlərinə uyğun gəlir (ağ ciyərlər, mədə, bağırsaq). Ona görə demək olar ki, akustik dalğalar tibbi diaqnostikada istifadə olunan bütün növ bioloji toxumalarda yayıla bilir. Akustik dalğalar digər fiziki təbiətə malik dalğalar, məsələn, elektromaqnit dalğaları kimi fəza və zamana görə dəyişən bir sıra xarakteristikalara malikdir. Akustik dalğalarda əsas dəyişən kəmiyyət rəqs zamanı elastiki mühitin yerdəyişməsi və təzyiqyin rəqsləridir. == Uzununa akustik dalğalar == Ultrasəs diaqnostikasında uzununa akustik dalğalardan istifadə olunur. Uzununa dalğalarda mühitin zərrəciklərinin tarazlıq vəziyyəti ətrafında yerdəyişməsi rəqsin yayılması istiqamətində baş verir. Sıxılma və seyrəkləşmə zonalarının mühitdə yayılma sürəti dalğanın sürətinə bərabərdir.
Çoxparametrli spektral nəzəriyyə haqqında mühazirələr
Prof. Hamlet İsaxanlının (Hamlet İsayevin) 1985-ci ildə Kanadada, Kalqari Universitetinin Riyaziyyat və Statistika departmentində oxuduğu mühazirələrin mətnindən ibarət ingiliscə kitab. The University of Calgary. Lectures on Multiparameter Spectral Theory of Orerators. Hamlet Isayev. Department of Mathematics and Statistics, 1985. == Məzmun == Preface Lecture 1. Tensor determinantal maps, matrix operators and the separating system of operators associated with multi-parameter spectral problems. Lecture 2. Tensor determinantal maps of self-adjoint operators.
İnfraqırmızı spektroskopiya
İnfraqırmızı spektroskopiya — infraqırmızı şüaların təsiri ilə maddələrin tərkibindəki dəyişikliklərin təyin edilməsində istifadə olunan spektral analiz üsullarından biridir. Hələ 1882–1900-cu illərdə Edvard Festinq 52 birləşmənin "IQ" spektrini almış və müşahidə olunan udmanın bu molekullardakı funksional qruplarla əlaqəsini göstərmişdir. Bu üsulun daha da təkmilləşməsində Amerika fiziki Uilyam Kobelsin böyük əməyi oldu. Hələ 1903-cü ildə o, NaCl prizmasından istifadə edərək yüzlərlə üzvi və qeyri-üzvi maddələrin tam infraqırmızı spektrlərini almışdır. İQ spektroskopiyanın inkişafı İQ interferometrlərinin meydana gəlməsi ilə bağlı olmuşdur ki, bunlar da 70-ci illərdə təkmilləşərək kompüterləşmiş və Furye çevrici ilə təchiz olunmuş halda dünya bazarlarına çıxarılmışdır. Spektrlərdəki ehtizazi və fırlanma dalğa uzunluğu 1–50µ arasındadır. Mineralogiyada və kristalloqrafiyada infraqırmızı spektroskopiya mineral qarışıqlarının kəmiyyət analizi və tutuşdurulması; mineralın quruluşundakı H2O-nun təbiətini müəyyən etmək, onların əmələ gəlməsində bir kriteriya kimi quruluşun nizamlanma dərəcəsini araşdırmaq üçün və başqa hallarda istifadə olunur. Spektroskopiya maddə ilə elektromaqnit şüaların qarşılıqlı təsirini, maddənin struktur quruluşunu və onu təşkil edən atomların və molekulların öyrənilməsidir. Spektroskopiya elektromaqnit şüalanmanın – qamma şüaların, X-şüaların (rentgen şüaları), infraqırmızı şüaların, görünən və ultrabənövşəyi şüaların, mikrodalğanın və radio tezliklərin bütün sahəsini istifadə edir. İnfraqırmızı spektroskopiya spektroskopiyanın bir bölməsidir ki, infraqırmızı diapazonda üzvi və qeyri-üzvi birləşmələrin buraxılma, udulma və əksolunma spektrləri əldə edilir və araşdırılır.

Значение слова в других словарях

глубоме́р десятиуго́льник оскуде́ние териодо́нт функционе́р экс-губерна́тор поёживаться пома́да разба́лтывать тренажерострое́ние кант шпак anagrammatize conventional hold back hurl out obstructivity quaff scrubbing tower transpositional дистилляция литература перечить турнепс удостовериться