TRİQONOMETRİ́K

sif. [ yun. trigonon və metreo]
1. Triqonometriyaya aid olan, triqonometriya ilə əlaqədar olan. Triqonometrik cədvəl.
2. geod. Geodezik ölçmə ilə əlaqədar olan, trianqulyasiya üsulu ilə görülən. Triqonometrik işarə. Triqonometrik məntəqə.
TRİKOTAJÇI
TRİQONOMÉTRİYA
OBASTAN VİKİ
Triqonometrik funksiya
Triqonometrik funksiyalar — elementar funksiyalarin bir növüdür. Onlara sinus (sin x), kosinus (cos x), tangens (tg x), kotangens (ctg x), sekans (sec x) və kosekans (cosec x) funksiyalarını aid edirlər. Triqonometrik funksiyalar adətən həndəsi yolla təyin olunur, lakin onları analitik və bəzi differensial tənliklərin həlli şəklində də təyin etmək mümkündür. Belə hallarda triqonometrik funksiyaların təyin oblastı kompleks ədədləri də əhatə edir. == Triqonometrik funksiyaların təyin olunma yolları == Triqonometrik funksiyaları adətən həndəsi yolla təyin edirlər. Fərz edək ki, müstəvidə dekart koordinat sistemində, mərkəzi koordinat başlanğıcı O nöqtəsində olmaqla R radiuslu çevrə var. Bucaqları absis oxunun müsbət istiqamətdə OB şüasına qədər dönməsi kimi qəbul edirik. Saat əqrəbinin hərəkəti istiqaməti mənfi, əks istiqamət isə müsbət hesab edilir. B nöqtəsinin koordinatlaını dekart koordinat sistemində (xB, yB) kimi qeyd edək.
Triqonometrik funksiyalar
Triqonometrik funksiyalar — elementar funksiyalarin bir növüdür. Onlara sinus (sin x), kosinus (cos x), tangens (tg x), kotangens (ctg x), sekans (sec x) və kosekans (cosec x) funksiyalarını aid edirlər. Triqonometrik funksiyalar adətən həndəsi yolla təyin olunur, lakin onları analitik və bəzi differensial tənliklərin həlli şəklində də təyin etmək mümkündür. Belə hallarda triqonometrik funksiyaların təyin oblastı kompleks ədədləri də əhatə edir. == Triqonometrik funksiyaların təyin olunma yolları == Triqonometrik funksiyaları adətən həndəsi yolla təyin edirlər. Fərz edək ki, müstəvidə dekart koordinat sistemində, mərkəzi koordinat başlanğıcı O nöqtəsində olmaqla R radiuslu çevrə var. Bucaqları absis oxunun müsbət istiqamətdə OB şüasına qədər dönməsi kimi qəbul edirik. Saat əqrəbinin hərəkəti istiqaməti mənfi, əks istiqamət isə müsbət hesab edilir. B nöqtəsinin koordinatlaını dekart koordinat sistemində (xB, yB) kimi qeyd edək.
Triqonometrik tangens funksiyası
triqonometrik tangens funksiyası - tan. Əgər A düzbucaqlı üçbucağın bucağıdırsa, onda A bucağının tangensi (tan A, yaxud tg A kimi yazılır) aşağıdakı kimi təyin olunur: tan A = (qarşıdakı tərəfin uzunluğu)/(bitişik tərəfin uzunluğu) Bir çox proqramlaşdırma dilində tan(A) funksiyası tan A qiymətini (A radianla verilir) hesablayır. == Ədəbiyyat == İsmayıl Calallı (Sadıqov), “İnformatika terminlərinin izahlı lüğəti”, 2017, “Bakı” nəşriyyatı, 996 s.
Tərs triqonometrik funksiyalar
Tərs triqonometrik funksiyalar (dairəvi funksiya, arkfunksiya) — triqonometrik funksiyalar tərsinə çevrilə bilən riyazi funksiyalardır. Tərs triqonometrik funksiyalara əsasən altı funksiya daxildir: arksinus ( a r c s i n x ; a r c s i n x {\displaystyle \mathrm {arcsin} \,x;\mathrm {arcsin} \,x} — bu bucağın sinusu x {\displaystyle x} -ə bərabərdir) arkkosinus ( a r c c o s x ; a r c c o s x {\displaystyle \mathrm {arccos} \,x;\mathrm {arccos} \,x} — bu bucağın kosinusu x {\displaystyle x} -ə bərabərdir) arktangens ( a r c t g x {\displaystyle \mathrm {arctg} \,x} ; xarici ədəbiyyatlarda a r c t a n x {\displaystyle \mathrm {arctan} \,x} ) arkkotangens ( a r c c t g x {\displaystyle \mathrm {arcctg} \,x} ; xarici ədəbiyyatlarda a r c c o t x {\displaystyle \mathrm {arccot} \,x} və ya a r c c o t a n x {\displaystyle \mathrm {arccotan} \,x} ) arksekans( a r c s e c x {\displaystyle \mathrm {arcsec} \,x} ) arkkosekans( a r c c o s e c x {\displaystyle \mathrm {arccosec} \,x} ; xarici ədəbiyyatlarda a r c c s c x {\displaystyle \mathrm {arccsc} \,x} )Triqonometrik funksiyaların adının qarışındakı "arc" sözü( lat. arcus — ox, qövs, qövsəoxşar xətt) bu funksiyaları tərs triqonometrik funksiyaların adına çevirir. Bu onunla bağlıdır ki, tərs triqonometrik funksiyaların həndəsi qiyməti vahid çevrənin qövsünün uzunluğu ilə əlaqələndirmək olar. Tərs triqonometrik funksiyalar anlayışını Laqranj köməyi ilə Avstriya riyaziyyatçısı Karla Şerfer (alm. Karl Scherffer‎; 1716—1783) daxil etmişdir. == Əsas eyniliklər == arcsin ⁡ x + arccos ⁡ x = π 2 {\displaystyle \arcsin x+\arccos x={\frac {\pi }{2}}} arctg x + arcctg x = π 2 {\displaystyle \operatorname {arctg} \,x+\operatorname {arcctg} \,x={\frac {\pi }{2}}} == Arksinus funksiyası == Arksinus - m ədədinin x bucağının qiymətinə , radian ifadəsinə deyilir, hansı ki, sin ⁡ x = m , − π 2 ⩽ x ⩽ π 2 , | m | ⩽ 1. {\displaystyle \sin x=m,\,-{\frac {\pi }{2}}\leqslant x\leqslant {\frac {\pi }{2}},\,|m|\leqslant 1.} y = sin ⁡ x {\displaystyle y=\sin x} funksiyası bütün ədəd oxunda kəsilməz və məhduddur. y = arcsin ⁡ x {\displaystyle y=\arcsin x} funksiyası ciddi artandır. sin ⁡ ( arcsin ⁡ x ) = x {\displaystyle \sin(\arcsin x)=x\qquad } − 1 ⩽ x ⩽ 1 , {\displaystyle -1\leqslant x\leqslant 1,} arcsin ⁡ ( sin ⁡ y ) = y {\displaystyle \arcsin(\sin y)=y\qquad } − π 2 ⩽ y ⩽ π 2 , {\displaystyle -{\frac {\pi }{2}}\leqslant y\leqslant {\frac {\pi }{2}},} D ( arcsin ⁡ x ) = [ − 1 ; 1 ] {\displaystyle D(\arcsin x)=[-1;1]\qquad } (təyin oblastı), E ( arcsin ⁡ x ) = [ − π 2 ; π 2 ] {\displaystyle E(\arcsin x)=\left[-{\frac {\pi }{2}};{\frac {\pi }{2}}\right]\qquad } (qiymətlər çoxluğu).
Triqonometrik funksiyaların inteqralları siyahısı
Triqonometrik funksiyaların inteqralları siyahısı — bütün Triqonometrik funksiyaların inteqralları haqqında olan düsturları cəmləşdirir. Düsturlardan qeyd etmək lazımdır ki, C (yəni, konstant) heç vaxt sıfra bərabər deyildir. == Əsas Triqonometrik funksiyaların inteqralları == ∫ sin ⁡ ( a x + b ) d x = − 1 a cos ⁡ ( a x + b ) + C {\displaystyle \int \sin(ax+b)\,dx=-{\frac {1}{a}}\cos(ax+b)+C} ∫ cos ⁡ ( a x + b ) d x = 1 a sin ⁡ ( a x + b ) + C {\displaystyle \int \cos(ax+b)\,dx={\frac {1}{a}}\sin(ax+b)+C} ∫ tan ⁡ ( a x ) d x = − 1 a ln ⁡ | cos ⁡ ( a x ) | + C = 1 a ln ⁡ | sec ⁡ ( a x ) | + C {\displaystyle \int \tan(ax)\,dx=-{\frac {1}{a}}\ln |\cos(ax)|+C={\frac {1}{a}}\ln |\sec(ax)|+C} ∫ cotan ⁡ ( a x ) d x = 1 a ln ⁡ | sin ⁡ ( a x ) | + C {\displaystyle \int \operatorname {cotan} (ax)\,dx={\frac {1}{a}}\ln |\sin(ax)|+C} ∫ sin ⁡ ( x ) d x = − cos ⁡ ( x ) + C {\displaystyle \int \sin(x)\,dx=-\cos(x)+C} ∫ cos ⁡ ( x ) d x = sin ⁡ ( x ) + C {\displaystyle \int \cos(x)\,dx=\sin(x)+C} ∫ tan ⁡ ( x ) d x = − ln ⁡ | cos ⁡ ( x ) | + C = ln ⁡ | sec ⁡ ( x ) | + C {\displaystyle \int \tan(x)\,dx=-\ln |\cos(x)|+C=\ln |\sec(x)|+C} ∫ cotan ⁡ ( x ) d x = ln ⁡ | sin ⁡ ( x ) | + C = − ln ⁡ | cosec ⁡ ( x ) | + C {\displaystyle \int \operatorname {cotan} (x)\,dx=\ln |\sin(x)|+C=-\ln |\operatorname {cosec} (x)|+C} == Sinus inteqralları == ∫ sin ⁡ c x d x = − 1 c cos ⁡ c x {\displaystyle \int \sin cx\;dx=-{\frac {1}{c}}\cos cx\,\!} ∫ sin n ⁡ c x d x = − sin n − 1 ⁡ c x cos ⁡ c x n c + n − 1 n ∫ sin n − 2 ⁡ c x d x ( n > 0 ) {\displaystyle \int \sin ^{n}cx\;dx=-{\frac {\sin ^{n-1}cx\cos cx}{nc}}+{\frac {n-1}{n}}\int \sin ^{n-2}cx\;dx\qquad {\mbox{( }}n>0{\mbox{)}}\,\!} ∫ x sin ⁡ c x d x = sin ⁡ c x c 2 − x cos ⁡ c x c {\displaystyle \int x\sin cx\;dx={\frac {\sin cx}{c^{2}}}-{\frac {x\cos cx}{c}}\,\!} ∫ x 2 sin ⁡ c x d x = 2 cos ⁡ c x c 3 + 2 x sin ⁡ c x c 2 − x 2 cos ⁡ c x c {\displaystyle \int x^{2}\sin cx\;dx={\frac {2\cos cx}{c^{3}}}+{\frac {2x\sin cx}{c^{2}}}-{\frac {x^{2}\cos cx}{c}}\,\!} ∫ x 3 sin ⁡ c x d x = − 6 sin ⁡ c x c 4 + 6 x cos ⁡ c x c 3 + 3 x 2 sin ⁡ c x c 2 − x 3 cos ⁡ c x c {\displaystyle \int x^{3}\sin cx\;dx=-{\frac {6\sin cx}{c^{4}}}+{\frac {6x\cos cx}{c^{3}}}+{\frac {3x^{2}\sin cx}{c^{2}}}-{\frac {x^{3}\cos cx}{c}}\,\!} ∫ x 4 sin ⁡ c x d x = − 24 cos ⁡ c x c 5 − 24 x sin ⁡ c x c 4 + 12 x 2 cos ⁡ c x c 3 + 4 x 3 sin ⁡ c x c 2 − x 4 cos ⁡ c x c {\displaystyle \int x^{4}\sin cx\;dx=-{\frac {24\cos cx}{c^{5}}}-{\frac {24x\sin cx}{c^{4}}}+{\frac {12x^{2}\cos cx}{c^{3}}}+{\frac {4x^{3}\sin cx}{c^{2}}}-{\frac {x^{4}\cos cx}{c}}\,\!} ∫ x 5 sin ⁡ c x d x = 120 sin ⁡ c x c 6 − 120 x cos ⁡ c x c 5 − 60 x 2 sin ⁡ c x c 4 + 20 x 3 cos ⁡ c x c 3 + 5 x 4 sin ⁡ c x c 2 − x 5 cos ⁡ c x c {\displaystyle \int x^{5}\sin cx\;dx={\frac {120\sin cx}{c^{6}}}-{\frac {120x\cos cx}{c^{5}}}-{\frac {60x^{2}\sin cx}{c^{4}}}+{\frac {20x^{3}\cos cx}{c^{3}}}+{\frac {5x^{4}\sin cx}{c^{2}}}-{\frac {x^{5}\cos cx}{c}}\,\!} ∫ x n sin ⁡ c x d x = n ! ⋅ sin ⁡ c x [ x n − 1 c 2 ⋅ ( n − 1 ) ! − x n − 3 c 4 ⋅ ( n − 3 ) ! + x n − 5 c 6 ⋅ ( n − 5 ) ! − . . . ] − − n !

Значение слова в других словарях

видеосвя́зь гастро́льный гидрометаллургия огло́хнуть от приро́ды проскользи́ть резану́ть угора́здиться вознесе́нье ива́новский иглоко́жие минда́льный ультрараси́зм граять -iatry cotton-picking mudfish nature-nature negation pennae tanistry легкомысленно ожидать прилуняться упрощать