f(x)-in a dan b'yə qədər olan inteqralı, y=f(x) funksiyasının a ilə b arasındakı fiqurun sahәsinә bәrabәrdir.
İnteqral – kəsilməz f(x) funksiyasının ibtidai funksiyalarının ümumi şəklinə f(x) funksiyasının inteqralı deyilir.
İnteqral sahəsində ən böyük işləri Qotfrid Leybnits və İsaak Nyuton görmüşlər. "İnteqral" sözünü və işarəsini ilk dəfə elmə alman alimi Qotfrid Leybnits daxil etmişdir. Bu söz latıncadan "Cəm" ("ſumma", "summa") mənasını verir. İnteqral ∫ hərfi ilə işarə edilir:
F
(
x
)
=
∫
f
(
x
)
+
c
,
{\displaystyle F(x)=\int f(x)+c,}
[a, b] parçasında götürülmüş f(x) funksiyasının müəyyən inteqralın düsturu belədir:
∫
a
b
f
(
x
)
d
x
{\displaystyle \int _{a}^{b}\!f(x)\,dx\,}
Qeyri-müəyyən inteqralın isə düsturu belədir:
F
=
∫
f
(
x
)
d
x
+
c
{\displaystyle F=\int f(x)\,dx+c}
f
(
x
)
=
5
x
2
+
9
x
+
15
{\displaystyle f(x)=5x^{2}+9x+15\,}
.
f
′
(
x
)
=
10
x
+
9
+
0
{\displaystyle f'(x)=10x+9+0\,}
.
∫
(
10
x
+
9
)
d
x
=
5
x
2
+
9
x
+
C
{\displaystyle \int (10x+9)\,dx=5x^{2}+9x+C}
.
∫
d
x
=
x
+
C
{\displaystyle \int dx=x+C}
∫
d
x
x
=
ln
|
x
|
+
C
{\displaystyle \int {dx \over x}=\ln {\left|x\right|}+C}
∫
d
x
a
2
+
x
2
=
1
a
arctan
x
a
+
C
{\displaystyle \int {dx \over {a^{2}+x^{2}}}={1 \over a}\arctan {x \over a}+C}
∫
d
x
a
2
−
x
2
=
arcsin
x
a
+
C
{\displaystyle \int {dx \over {\sqrt {a^{2}-x^{2}}}}=\arcsin {x \over a}+C}
∫
−
d
x
a
2
−
x
2
=
arccos
x
a
+
C
{\displaystyle \int {-dx \over {\sqrt {a^{2}-x^{2}}}}=\arccos {x \over a}+C}
∫
d
x
x
x
2
−
a
2
=
1
a
sec
|
x
|
a
+
C
{\displaystyle \int {dx \over x{\sqrt {x^{2}-a^{2}}}}={1 \over a}\sec {|x| \over a}+C}
∫
ln
(
x
)
d
x
=
x
ln
(
x
)
−
x
+
C
,
{\displaystyle \int \ln(x)\,dx=x\ln(x)-x+C,}
∫
log
b
x
d
x
=
x
log
b
x
−
x
log
b
e
+
C
{\displaystyle \int \log _{b}{x}\,dx=x\log _{b}{x}-x\log _{b}{e}+C}
:)
∫
e
x
d
x
=
e
x
+
C
{\displaystyle \int e^{x}\,dx=e^{x}+C}
∫
a
x
d
x
=
a
x
ln
a
+
C
{\displaystyle \int a^{x}\,dx={\frac {a^{x}}{\ln {a}}}+C}
∫
a
l
n
(
x
)
d
x
=
∫
x
l
n
(
a
)
d
x
=
x
a
l
n
(
x
)
ln
a
+
1
+
C
=
x
x
l
n
(
a
)
ln
a
+
1
+
C
{\displaystyle \int a^{ln(x)}\,dx=\int x^{ln(a)}\,dx={\frac {x\,a^{ln(x)}}{\ln {a}+1}}+C={\frac {x\,x^{ln(a)}}{\ln {a}+1}}+C}
Qotfrid Leybnits
Ser İsaak Nyuton
∫
sin
x
d
x
=
−
cos
x
+
C
{\displaystyle \int \sin {x}\,dx=-\cos {x}+C}
∫
cos
x
d
x
=
sin
x
+
C
{\displaystyle \int \cos {x}\,dx=\sin {x}+C}
∫
tan
x
d
x
=
−
ln
|
cos
x
|
+
C
{\displaystyle \int \tan {x}\,dx=-\ln {\left|\cos {x}\right|}+C}
∫
cot
x
d
x
=
ln
|
sin
x
|
+
C
{\displaystyle \int \cot {x}\,dx=\ln {\left|\sin {x}\right|}+C}
∫
sec
x
d
x
=
ln
|
sec
x
+
tan
x
|
+
C
{\displaystyle \int \sec {x}\,dx=\ln {\left|\sec {x}+\tan {x}\right|}+C}
∫
csc
x
d
x
=
ln
|
csc
x
−
cot
x
|
+
C
{\displaystyle \int \csc {x}\,dx=\ln {\left|\csc {x}-\cot {x}\right|}+C}
∫
sec
2
x
d
x
=
tan
x
+
C
{\displaystyle \int \sec ^{2}x\,dx=\tan x+C}
∫
csc
2
x
d
x
=
−
cot
x
+
C
{\displaystyle \int \csc ^{2}x\,dx=-\cot x+C}
∫
sec
x
tan
x
d
x
=
sec
x
+
C
{\displaystyle \int \sec {x}\,\tan {x}\,dx=\sec {x}+C}
∫
csc
x
cot
x
d
x
=
−
csc
x
+
C
{\displaystyle \int \csc {x}\,\cot {x}\,dx=-\csc {x}+C}
∫
sin
2
x
d
x
=
1
2
(
x
−
sin
x
cos
x
)
+
C
{\displaystyle \int \sin ^{2}x\,dx={\frac {1}{2}}(x-\sin x\cos x)+C}
∫
cos
2
x
d
x
=
1
2
(
x
+
sin
x
cos
x
)
+
C
{\displaystyle \int \cos ^{2}x\,dx={\frac {1}{2}}(x+\sin x\cos x)+C}
∫
sec
3
x
d
x
=
1
2
sec
x
tan
x
+
1
2
ln
|
sec
x
+
tan
x
|
+
C
{\displaystyle \int \sec ^{3}x\,dx={\frac {1}{2}}\sec x\tan x+{\frac {1}{2}}\ln |\sec x+\tan x|+C}
∫
sin
n
x
d
x
=
−
sin
n
−
1
x
cos
x
n
+
n
−
1
n
∫
sin
n
−
2
x
d
x
{\displaystyle \int \sin ^{n}x\,dx=-{\frac {\sin ^{n-1}{x}\cos {x}}{n}}+{\frac {n-1}{n}}\int \sin ^{n-2}{x}\,dx}
∫
cos
n
x
d
x
=
cos
n
−
1
x
sin
x
n
+
n
−
1
n
∫
cos
n
−
2
x
d
x
{\displaystyle \int \cos ^{n}x\,dx={\frac {\cos ^{n-1}{x}\sin {x}}{n}}+{\frac {n-1}{n}}\int \cos ^{n-2}{x}\,dx}
∫
arctan
x
d
x
=
x
arctan
x
−
1
2
ln
|
1
+
x
2
|
+
C
{\displaystyle \int \arctan {x}\,dx=x\,\arctan {x}-{\frac {1}{2}}\ln {\left|1+x^{2}\right|}+C}
∫
sinh
x
d
x
=
c
o
s
h
x
+
C
{\displaystyle \int \sinh x\,dx=\,coshx+C}
∫
cosh
x
d
x
=
sinh
x
+
C
{\displaystyle \int \cosh x\,dx=\sinh x+C}
∫
tanh
x
d
x
=
ln
|
cosh
x
|
+
C
{\displaystyle \int \tanh x\,dx=\ln |\cosh x|+C}
∫
csch
x
d
x
=
ln
|
tanh
x
2
|
+
C
{\displaystyle \int {\mbox{csch}}\,x\,dx=\ln \left|\tanh {x \over 2}\right|+C}
∫
sech
x
d
x
=
arctan
(
sinh
x
)
+
C
{\displaystyle \int {\mbox{sech}}\,x\,dx=\arctan(\sinh x)+C}
∫
coth
x
d
x
=
ln
|
sinh
x
|
+
C
{\displaystyle \int \coth x\,dx=\ln |\sinh x|+C}
∫
sech
2
x
d
x
=
tanh
x
+
C
{\displaystyle \int {\mbox{sech}}^{2}x\,dx=\tanh x+C}
∫
arcsinh
x
d
x
=
x
arcsinh
x
−
x
2
+
1
+
C
{\displaystyle \int \operatorname {arcsinh} x\,dx=x\operatorname {arcsinh} x-{\sqrt {x^{2}+1}}+C}
∫
arccosh
x
d
x
=
x
arccosh
x
−
x
2
−
1
+
C
{\displaystyle \int \operatorname {arccosh} x\,dx=x\operatorname {arccosh} x-{\sqrt {x^{2}-1}}+C}
∫
arctanh
x
d
x
=
x
arctanh
x
+
1
2
log
(
1
−
x
2
)
+
C
{\displaystyle \int \operatorname {arctanh} x\,dx=x\operatorname {arctanh} x+{\frac {1}{2}}\log {(1-x^{2})}+C}
∫
arccsch
x
d
x
=
x
arccsch
x
+
log
[
x
(
1
+
1
x
2
+
1
)
]
+
C
{\displaystyle \int \operatorname {arccsch} \,x\,dx=x\operatorname {arccsch} x+\log {\left[x\left({\sqrt {1+{\frac {1}{x^{2}}}}}+1\right)\right]}+C}
∫
arcsech
x
d
x
=
x
arcsech
x
−
arctan
(
x
x
−
1
1
−
x
1
+
x
)
+
C
{\displaystyle \int \operatorname {arcsech} \,x\,dx=x\operatorname {arcsech} x-\arctan {\left({\frac {x}{x-1}}{\sqrt {\frac {1-x}{1+x}}}\right)}+C}
∫
arccoth
x
d
x
=
x
arccoth
x
+
1
2
log
(
x
2
−
1
)
+
C
{\displaystyle \int \operatorname {arccoth} \,x\,dx=x\operatorname {arccoth} x+{\frac {1}{2}}\log {(x^{2}-1)}+C}