Dördbucaqlı

DÖRDBUCAQLILAR
┌─────────────┼─────────────┐
çökük qabarıq
┌─────────────┼─────────────┐
xaricə çəkilmiş çevrə trapesiya daxilə çəkilmiş çevrə
| ┌───────────┤ |


bərabəryanlı

paraleloqram

simmetrik tərəflər

qabarıq deltoid

diaqonallar perpendikulyardır
└─────┬─────┘ └─────┬─────┘

düzbucaqlı


Romb

└──────────┬─────────┘

kvadrat

Dördbucaqlı — bir müstəvi üzərində dörd təpəsi və dörd tərəfi olan çoxbucaqlıya deyilir. Dördbucaqlılar qabarıqçökük(qabarıq olmayan) olur.

Qabarıq dördbucaqlı-tərəfləri özündə saxlayan düz xəttlər üzərində dördbucaqlının daxilinə aid nöqtə yoxdursa,bu dördbucaqlı Qabarıq Dördbucaqlı adlanır.

İxtiyari qabarıq dördbucaqlının sahəsi diaqonalları ilə aralarındakı bucağın siniusunin hasilinin yarısına bərabərdir.

Dördbucaqlının bucaqları cəmi 360°-yə bərabərdir.

Dördbucaqlının daxilinə yalnız və yalnız o halda çevrə çəkmək mümkündür ki, onun qarşı bucaqlarının cəmi 180°-yə bərabər olsun:

().

Dördbucaqlının xaricinə yalnız və yalnız o halda çevrə çəkmək mümkündür ki, onun qarşı tərəflərinin cəmi bir-birinə bərabər olsun:()

Dördbucaqlının növləri

[redaktə | mənbəni redaktə et]
  1. Trapesiya — iki qarşı tərəfi paralel olan dördbucaqlı
  2. Paraleloqram — qarşı tərəfləri cüt-cüt paralel olan dördbucaqlı
    • Düzbucaqlı — bütün bucaqları düz bucaq olan dördbucaqlı
    • Romb — bütün tərəfləri bərabər olan dördbucaqlı
    • Kvadrat — bütün tərəfləri bərabər və bütün bucaqları düz bucaq olan dördbucaqlı
  3. Deltoid — iki cüt bitişik tərəfləri bərabər olan dördbucaqlı

Baxmayaraq ki, bu ad dördbucaqlı adına ekvivalent ola bilər, bu anlayış üçün bəzi məna əlavə olunur. Belə ki, heç bir ikisi paralel olmayan və heç bir üçü bir nöqtədən keçməyən dörd düz xətt dördtərəfli adlanır. Bu cür konfiqurasiyaya Evklid həndəsəsinin bəzi iddialarında rast gəlinir ki, (məsələn, Menelay teoremi, Qauss düz xətti, Ober düz xətti və s.) tez-tez bütün düz xətlər qarşılıqlı əvəz oluna bilirlər.