Ribonuklein turşusu: Redaktələr arasındakı fərq

Vikipediya saytından
Naviqasiyaya keç Axtarışa keç
Silinən məzmun Əlavə edilmiş məzmun
Sətir 39: Sətir 39:
# RNT-də adenini tamamlayan [[nukleotid]] DNT-də olduğu kimi, [[timin]] deyildir və urasil, timin tərkibindəki unmetilated formasıdır.
# RNT-də adenini tamamlayan [[nukleotid]] DNT-də olduğu kimi, [[timin]] deyildir və urasil, timin tərkibindəki unmetilated formasıdır.
# DNT, iki ayrı molekuldan ibarət olan ikiqat [[dezoksiribonuklein turşusu]] şəklində mövcuddur. RNT molekulları orta hesabla daha qısa və əsasən tək tellidirlər.
# DNT, iki ayrı molekuldan ibarət olan ikiqat [[dezoksiribonuklein turşusu]] şəklində mövcuddur. RNT molekulları orta hesabla daha qısa və əsasən tək tellidirlər.

Bioloji aktiv RNT molekullarının, o cümlədən tRNT,rRNT,snRNT və zülalları kodlamayan digər molekulların struktur təhlili,onların uzun spiraldan ibarət olmadığını və bir-birinə yaxın yerləşən və [[Zülallar|zülalın]] üçüncü quruluşuna bənzər bir şey meydana gətirən çoxsaylı qısa spirallardan ibarət olduğunu göstərdi. Bunun nəticəsində RNT kimyəvi reaksiyaları kataliz edə bilər, məsələn, zülalların peptit bağının meydana gəlməsində iştirak edən [[Ribosom|ribosomun]] peptitil transferaz mərkəzi tamamilə RNT-dən ibarətdir.<ref>{{məqalə |заглавие=RNA secondary structure: physical and computational aspects |издание=Quarterly Reviews of Biophysics |том=33 |страницы=199—253 |doi=10.1017/S0033583500003620 |язык=en |тип=journal |автор=Higgs P. G. |год=2000}}</ref><ref name=ribosome_activity>{{məqalə |заглавие=The structural basis of ribosome activity in peptide bond synthesis |издание=Science |том=289 |номер=5481 |страницы=920—930 |doi=10.1126/science.289.5481.920 |язык=en |тип=journal |автор=Nissen P., Hansen J., Ban N., Moore P. B., Steitz T. A. |год=2000}}</ref>


== Sintezi ==
== Sintezi ==

13:49, 13 may 2020 tarixindəki versiya

MRNT. Baza içərisindəki azot atomları mavi rəngdə,oksigen fosfat əsaslı molekullar - qırmızı rəngdə verilmişdir.

Ribonuklein turşusu, RNT - hüceyrədə informasiyanın genlərdən zülala ötürülməsi yəni transkripsiya və translyasiya proseslərində, eləcə də genetik ifadə prosesinin tənzimlənməsində birbaşa iştirak edən DNT kimi nukelotidlərdən ibarət makromolekul. RNT nuklein turşusu olub əsas üç növə bölünür: tRNT mRNT və rRNT. Əksər canlıların irsi maddəsi DNT olsa da bəzi viruslarınki (retroviruslar) RNT-dir.

Eynilə DNT (deoksiribonuklein turşusu) kimi RNT hər bir keçidin bir nukleotid adlandığı uzun bir zəncirdən ibarətdir. Hər bir nukleotid azot əsasları,riboza şəkər və fosfat qrupundan ibarətdir. Nukleotid ardıcıllığı RNT-yə genetik məlumatları kodlamağa imkan verir. Bütün hüceyrə orqanizmləri protein sintezini proqramlaşdırmaq üçün RNT (MRNT) istifadə edir.

Hüceyrə RNT-ləri transkripsiya adlanan bir proses zamanı meydana gəlir,yəni DNT matrisində RNT sintezi,xüsusi fermentlər - RNT polimerazları tərəfindən həyata keçirilir. Bundan sonra MRNT prosesdə,translyasiya (biologiya) adlanan,iştirakı qəbul edir. Translyasiya — transkripsiya nəticəsində yaranan MRNT-lərdəki koda uyğun olaraq ribosomlarda reallaşdırılan polipeptit sintezi prosesidir. Transkripsiyadan sonra digər RNT-lər kimyəvi dəyişikliklərə məruz qalırlar,ikincili və üçüncülü quruluşların meydana gəlməsindən sonra RNT növündən asılı olaraq funksiyaları yerinə yetirirlər.

Tək qapalı RNT-lərə eyni zəncirin nukleotidlərinin bir hissəsi bir-biri ilə cütləşdiyi müxtəlif məkan quruluşları xarakterikdir. Bəzi yüksək quruluşlu RNTlər hüceyrə zülalı sintezində iştirak edir,məsələn,tRNT-lər genetik kodları tanımaq üçün istifadə olunur və zülal sintezi sahəsinə müvafiq amin turşularının çatdırılması və ribosomal RNT-lər ribosomların struktur və katalitik əsasını təşkil edir.

Ancaq müasir hüceyrələrdəki RNT-nin funksiyaları yalnız translyasiyadakı rolları ilə məhdudlaşmır. Beləliklə, kiçik nüvə RNT-ləri eukariotik MRNT-lərin yayılmasında və digər proseslərdə iştirak edirlər.

RNT molekulların bəzi fermentlərin (məsələn, telomerazın) bir hissəsi olmasına əlavə olaraq, fərdi RNT-nin öz ferment aktivliyi: digər RNT molekullarına daxil olmaq və ya əksinə iki RNT parçasını "bir-birinə yapışdırmaq" qabiliyyəti var. Belə RNT -lərə ribozimlər deyilir.

Bir sıra virusların genomları RNT-dən ibarətdir, yəni onlarda DNT-nin daha yüksək orqanizmlərdə oynadığı rol oynayır. Hüceyrədəki RNT funksiyalarının müxtəlifliyinə əsaslanaraq, RNT-nin prebioloji sistemlərdə özünü çoxalda bilən ilk molekul olması barədə bir fərziyyə irəli sürüldü.

Tədqiqatı tarixi

Nuklein turşuları, nüvədə (lat. nucleus) tapıldığı üçün bu maddələri "nuklein" adlandıran İsveçrə alimi Yohann Friedrix Mişer tərəfindən kəşf edilmişdir.[1] Sonradan məlum oldu ki,nüvəsi olmayan bakteriya hüceyrələrində nuklein turşuları da var. Zülal sintezindəki RNT-nin əhəmiyyəti 1939-cu ildə Torbyorn, Oskar Kasperson,Cin Braş və Cek Şulz tərəfindən irəli sürülmüşdür.[2] Cerard Meyrbaks,dovşan hemoqlobini kodlayan ilk MRNT-ni təcrid etdi və eyni proteininin yumurta hüceyrəyə daxil olduqda meydana gəldiyini göstərdi.[3] 1956-1957-ci illərdə A. Belozerski, A.Spirin, E.Volkin, L.Astraxan RNT hüceyrələrinin tərkibini müəyyənləşdirmək üçün iş apardı, nəticədə hüceyrədəki RNT-nin əsas hissəsi ribosomal RNT-dir.[4] Severo Oçoa, RNT sintezi mexanizmini kəşf etdiyinə görə 1959-cu ildə tibb üzrə Nobel mükafatını aldı.[5]

1961-ci ildə sovet alimləri G.P. Georgiyev və V.L.Mantiyev heyvan hüceyrələrinin nüvələrində nüvə RNT aşkar etmişlər,onlardan MRNT əmələ gəlmişdir.[6]. 1961-ci ilin oktyabrında 145 nömrəli "Ali orqanizmlərin nüvələrində Dezoksiribonuklein turşusu (DNT) (yeni sinif ribonuklein turşusu) sintezi fenomeni" adlı elmi kəşf qeydə alındı.[7] Yüksək orqanizmlərin hüceyrələrinin nüvələrində yeni bir sinif ribonuklein turşusunun meydana gəlməsinin əvvəllər bilinməyən fenomenini - məlumat RNT-nin yüksək molekulyar çəkisi olan hüceyrə zülallarının sintezi üçün genetik məlumat daşıyan nüvə dDNT-ni (DNT-yə bənzər nükleotid tərkibi olan RNT) meydana gətirdilər.

S. cerevisiae mayasının tRNT-lərindan birinin 77 nukleotidinin ardıcıllığı 1965-ci ildə tibb üzrə Nobel mükafatını alan Robert Holli laboratoriyasında müəyyən edilmişdir.[8] 1967-ci ildə Karl Vyoz, RNT-lərin katalitik xüsusiyyətlərə sahib olduğunu irəli sürdü. O, proto-orqanizmlərin RNT-nin də məlumat saxlamaq üçün molekul rolunu oynadığı RNT dünyasının qondarma fərziyyəsini (indi bu rol əsasən DNT tərəfindən yerinə yetirilir) və metabolik reaksiyaları katalizləşdirən molekul (indi fermentlər bunu edirlər) olduğunu irəli sürdü.[9] 1976-cı ildə Uolter Faers və Belçikadakı Gent Universitetindəki qrup,RNT tərkibli bir virusun,bakteriofaj MS2-nin ilk ardıcıllığını təyin etdilər.[10] 1990-cı illərin əvvəllərində xarici genlərin bitki genomuna daxil olması oxşar bitki genlərini üstələdiyini aşkar etdi.[11] Eyni zamanda,təxminən 22 əsası olan RNT-nin indi mikroRNT adlandırıldığı C.elegans yumru qurdların ontogenezində tənzimləyici rol oynadığı göstərildi.[12]

Adının mənşəyi

Şəkər kimyasının banisi Emil Fişer,1880-ci illərin sonlarında, gənc həmkarı Oskar Piloti ilə birlikdə əvvəllər bilinməyən bir turşu olan arabinozdan isomerik arabinoz turşusu əldə etdi. Yeni maddənin adını icad edən müəlliflər əvvəlcə orijinal arabinoz turşusunun adını içindəki hərfləri dəyişdirərək "izomerləşdirdilər". Nəticə "raabinoz" idi,amma səslənməsini bəyənmədikləri üçün və aa -nı i ilə əvəz etdilər. Ribon turjusu alındı,yenidən bərpa ilə riboz turjusu əldə edildi. Artıq o, ribonuklein turşusu (RNT) və dezoksiribonuklein turşusu (DNT), ribosom,ribuloza monosaxarid,ribit spirti,ribonuklez fermenti və s. kimi birləşmələrə ad verdi.[13]

Kimyəvi tərkibi və monomerlərin modifikasiyası

Polinukleotid RNT-nin kimyəvi quruluşu

RNT nukleotidləri əsaslardan biri 1' mövqeyində bağlandığı şəkər - ribozdan: adenin,quanin,sitozin və ya urasilindən barətdir. Fosfat qrupu ribozu bir zəncirlə birləşdirir, bir ribozun 3' karbon atomu ilə digərinin 5' mövqeyində əlaqələr meydana gətirir. Fizioloji pH səviyyəsində fosfat qrupları mənfi yüklənir,buna görə RNT - aniondur. RNT dörd əsasdan (adenin(A), quanin(G),urasil(U) və sitozin (C)) olan bir polimer kimi transkripsiyalanmışdır, lakin yetkin RNT-də bir çox dəyişdirilmiş əsas və şəkər vardır.[14] Ümumilikdə, RNT-də təxminən 100 müxtəlif növ dəyişdirilmiş nukleotid var, bunlardan 2'-O-metilriboza ən çox yayılmış şəkər modifikasiyasıdır, psevdouridin isə ən çox yayılmış dəyişdirilmiş əsasdır.[15]

Psevdouridində (Ψ) urasil və riboza arasındakı əlaqə C - N deyil, C - C-dir,bu nukleotid RNT molekullarında fərqli mövqelərdə olur. Xüsusilə, psevdouridin tRNT-nin fəaliyyəti üçün vacibdir.[16] Digər diqqətəlayiq bir dəyişiklik bazası, nükleosid inosin adlandırılan, zərərsizləşdirilmiş adenin olan hipoksantindir. İnosin genetik kodun pozulmasını təmin etmək üçün mühüm rol oynayır.

Bir çox digər modifikasiyanın rolu tam aydın deyil,lakin ribosomal RNT-də bir çox post-transkripsiya dəyişiklikləri ribosomun fəaliyyət göstərməsi üçün vacib olan ərazilərdə yerləşir. Məsələn, ribonukleotidlərdən birində, bir peptit əlaqəsinin meydana gəlməsində iştirak edir.[17]

Quruluşu

DNT ilə müqayisəsi

DNT və RNT arasında üç əsas fərq var:

  1. DNT-də deoksiriboza şəkəri, RNT-də deoksiriboza, hidroksil qrupu ilə müqayisədə əlavə olan riboza var. Bu qrup molekulun hidrolizi ehtimalını artırır, yəni RNT molekulunun sabitliyini azaldır.
  2. RNT-də adenini tamamlayan nukleotid DNT-də olduğu kimi, timin deyildir və urasil, timin tərkibindəki unmetilated formasıdır.
  3. DNT, iki ayrı molekuldan ibarət olan ikiqat dezoksiribonuklein turşusu şəklində mövcuddur. RNT molekulları orta hesabla daha qısa və əsasən tək tellidirlər.

Bioloji aktiv RNT molekullarının, o cümlədən tRNT,rRNT,snRNT və zülalları kodlamayan digər molekulların struktur təhlili,onların uzun spiraldan ibarət olmadığını və bir-birinə yaxın yerləşən və zülalın üçüncü quruluşuna bənzər bir şey meydana gətirən çoxsaylı qısa spirallardan ibarət olduğunu göstərdi. Bunun nəticəsində RNT kimyəvi reaksiyaları kataliz edə bilər, məsələn, zülalların peptit bağının meydana gəlməsində iştirak edən ribosomun peptitil transferaz mərkəzi tamamilə RNT-dən ibarətdir.[18][19]

Sintezi

RNT növləri

RNT-ni parçalayan çəkic başı (hammerhead) riboziminin quruluşu

MRNT (məlumat RNT-si)- canlı hüceyrələrdə zülal sintezi üçün lazım olan informasiyanı DNT-dən alaraq ribosoma daşıyan RNT növüdür. MRNT-nin kodlaşdırma ardıcıllığı protein polipeptid zəncirinin amin turşusu ardıcıllığını təyin edir.[20] Bununla birlikdə, RNT-nin böyük əksəriyyəti zülal kodlaşdırmır. Bu kodlaşdırmayan RNT-lər ayrı-ayrı genlərdən (məsələn, ribosomal RNT-lərdən) transkripsiyalana bilər və ya intronlardan əldə edilə bilər.[21] Klassik,yaxşı öyrənilmiş kodlanmayan RNT-lər translyasiya prosesində iştirak edən nəqliyyat RNTləri (tRNT) və rRNT-lərdir.[22] Gen tənzimlənməsi, mRNT emalı və digər rollardan məsul RNT sinifləri də var. Bundan əlavə,RNT molekullarının kəsilməsi və bağlanması kimi kimyəvi reaksiyaları kataliz edə bilən kodlaşdırmayan RNT molekulları var.[23] Kimyəvi reaksiyaları kataliz edə bilən zülallara bənzətməklə - fermentlər, katalitik RNT molekullarına ribozimlər deyilir

Translyasiyada iştirakı

Gen tənzimlənməsində iştirakı

RNT emalı

RNT genomu

RNT virusları

Retroviruslar və retrotransposonlar

RNT-dünyası hipotezi

Həmçinin bax

İstinadlar

  1. Dahm R. Friedrich Miescher and the discovery of DNA // Developmental Biology (ing.) . 278 (journal) (ingilis). № 2. 2005. 274—288. PMID 15680349.
  2. Nierhaus KH, Wilson DN. Protein Synthesis and Ribosome Structure. Wiley-VCH. 2004. 3. ISBN 3-527-30638-2.
  3. Carlier M. "L'ADN, cette «simple» molécule". Esprit libre. 2003-06. 2011-08-23 tarixində arxivləşdirilib. İstifadə tarixi: ???.
  4. А. С. Спирин. Биоорганическая химия. М.: Высшая школа. 1986. 10.
  5. Ochoa S. "Enzymatic synthesis of ribonucleic acid" (PDF). Nobel Lecture. 1959. 2011-08-23 tarixində arxivləşdirilib (PDF). İstifadə tarixi: ???.
  6. "Георгиев Георгий Павлович — Мегаэнциклопедия Кирилла и Мефодия — статья" (rus). Энциклопедия Кирилла и Мефодия. İstifadə tarixi: 2019-02-08.
  7. "Научное открытие № 145 Явление синтеза ДРНК (рибонуклеиновой кислоты нового класса) в ядрах клеток высших организмов". ross-nauka.narod.ru. İstifadə tarixi: 2019-02-08.
  8. Holley RW; və b. Structure of a ribonucleic acid // Science . 147 (ingilis). № 1664. 1965. 1462–65. doi:10.1126/science.147.3664.1462. (#explicit_et_al)
  9. (сейчас это делают в основном ферменты)>Szathmáry E. The origin of the genetic code: amino acids as cofactors in an RNA world // Trends Genet . 15. № 6. 1999. doi:10.1016/S0168-9525(99)01730-8.
  10. Fiers W; və b. Complete nucleotide-sequence of bacteriophage MS2-RNA: primary and secondary structure of replicase gene // Nature . 260 (ingilis). 1976. 500–7. (#explicit_et_al)
  11. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans // Plant Cell . 2. № 4. 1990. PMID 12354959.
  12. Ruvkun G. Glimpses of a tiny RNA world // Science . 294 (ingilis). № 5543. 2001. 797–99. doi:10.1126/science.1066315.
  13. Илья Леенсон. Язык химии. Этимология химических названий. АСТ. 2016. ISBN 978-5-17-095739-2.
  14. Jankowski JAZ, Polak J. M. Clinical gene analysis and manipulation: tools, techniques and troubleshooting. Cambridge University Press. 1996. 14. ISBN 0521478960.
  15. Kiss T. Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs // The EMBO Journal (ing.) . 20 (journal) (ingilis). 2001. 3617—3622. doi:10.1093/emboj/20.14.3617.
  16. Yu Q., Morrow C. D. Identification of critical elements in the tRNA acceptor stem and TΨC loop necessary for human immunodeficiency virus type 1 infectivity // J Virol. (ing.) . 75 (journal) (ingilis). № 10. 2001. 4902—4906. doi:10.1128/JVI.75.10.4902-4906.2001.
  17. King T. H., Liu B., McCully R. R., Fournier M. J. Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center // Molecular Cell (ing.) . 11 (journal) (ingilis). № 2. 2002. 425—435. doi:10.1016/S1097-2765(03)00040-6.
  18. Higgs P. G. RNA secondary structure: physical and computational aspects // Quarterly Reviews of Biophysics . 33 (journal) (ingilis). 2000. 199—253. doi:10.1017/S0033583500003620.
  19. Nissen P., Hansen J., Ban N., Moore P. B., Steitz T. A. The structural basis of ribosome activity in peptide bond synthesis // Science . 289 (journal) (ingilis). № 5481. 2000. 920—930. doi:10.1126/science.289.5481.920.
  20. Sitat səhvi: Yanlış <ref> teqi; The_Cell adlı istinad üçün mətn göstərilməyib
  21. Sitat səhvi: Yanlış <ref> teqi; transcriptome adlı istinad üçün mətn göstərilməyib
  22. Berg J. M., Tymoczko J. L., Stryer L. Biochemistry (5th edition). WH Freeman and Company. 2002. 118–119. ISBN 0-7167-4684-0.
  23. Rossi J. J. Ribozyme diagnostics comes of age // Chemistry & Biology (ing.) . 11 (naməlum dil). № 7. 2004. 894—895. doi:10.1016/j.chembiol.2004.07.002.

Ədəbiyyat

Xarici keçidlər