Поиск по словарям.

Результаты поиска

OBASTAN VİKİ
Fontan
Fontan — fəvvarə. Quru fontan — İrəvan quberniyasının Yeni Bayazid qəzasında, indi Axta (Razdan) rayonunda kənd. Fontan (Dənizkənarı Alplar) — Fransanın cənub-şərqində yerləşən kommuna.
Termik neftçıxarma
Termik neftçıxarma - neft laylarına istilik (elektrik enerjisi, buxar, qızdırılımış su) verməklə neftin Yer səthinə qaldırılması üsulu. Termik neftçıxarmadan əsasən, kiçik təzyiqli və yüksək özlülüklü nefti olan layların işlənməsində istifadə olunur.
Quru fontan
Quru fontan — İrəvan quberniyasının Yeni Bayazid qəzasında, indi Axta (Razdan) rayonunda kənd. Rayon mərkəzindən 12 km cənub-qərbdə yerləşir. Toponim quru və fontan sözlərinin birləşməsindən əmələ gəlmişdir. Quruluşca mürəkkəb toponimdir. Kənddə tarixən azərbaycanlılar yaşamışdır. 1828-ci ildən sonra burada ruslar yerləşdirilmişdir. 1897-ci ildə burada 162 nəfər rus, 8 nəfər azərbaycanlı yaşamışdır. XX əsrin əvvəllərində, 1905–1906-cı illərdə azərbaycanlılar qovulmuşdur.
Basma üsulu
Basma üsulu - fırlanma səthinə malik hissələrin təzyiq altında emalı üçün tətbiq olunur. Bu üsulun səciyyəvi göstəricisi ondan ibarətdir ki, deformasiya zamanı alətlə pəstah arasında təmas presləmə, ştamplama və döymə kimi üsullardan fərqli olaraq lokal baş verir. Yəni alət kiçik xətt və ya sahə üzrə pəstahla kontakta girərək onu addım-addım plastiki deformasiya etdirir. Emaldan sonra divarın qalınlığı sabit qalır. Pəstahın fırlanması sayəsində alətin trayektoriyası pəstah üzrə qalxımı kiçik olan vintvari iz buraxır. Alətin verişi kiçik olduğundan pəstahın bəzi sahələri dəfələrlə plastikiləşmə prosesindən keçir. Basma zamanı metal lövhədən olan pəstah orta hissəsindən dayaqla matrisaya sıxılaraq fırladılır. Eninə supportda bərkidilmiş alət yandan pəstaha yaxınlaşır və onu tədricən deformasiya edərək basma patronun üzərinə sıxır. Üsulun texnoloji imkanları toxunan gərginlikləri sayəsində qırışların, toxunan və radial istqamətlərdə çatların yaranması ilə müəyyən olunur. Şəkildə basma üsulu ilə əldə edilmiş hissələr təsvir olunmuşdur.
Dekripitasiya üsulu
Dekripitasiya üsulu - belə bir təsəvvürə əsaslanır ki, mineralın böyüməsi dövründə zəbt etdiyi birfazalı flüid və ya məhlul soyuduqda və təzyiq aşağı düşdükdə maye, qaz və bəzən bərk fazalara parçalanır, mineralı qızdırdıqda isə proses əks istiqamətdə gedir və möhtəvinin bir fazalıya çevriləməsinədək davam edir. Təzyiq və konsentrasiyaya düzəlişlər etdikdən sonra möhtəvinin partlayış temperaturu, mineralın əmələ gəlmə temperaturu kimi qəbul edilir. Partlayış temperaturu ossiloqraf, elektromexaniki sayğac və başqa cihazlar vasitəsilə qeydə alınır. Sinonim: Termosəs üsulu. Mineral Maye Qaz Geologiya terminlərinin izahlı lüğəti. Bakı: Nafta-Press. 2006. 679.
Elektroerrozion üsulu
Elektroerrozion üsulu- mexaniki emala tamamlayıcı bir üsul olub elektrik keçirən hissələrin hazırlanmasında tətbiq olunur. Mürəkkəb metallik hissələrin hazırlanmasında bu üsulun yeri əvəz olunmazdır. Çünki, frezləmə üsulunun tətbiqi verilən hissənin həndəsəsindən asılıdır. Böyük dərinlikdə (> 200 mm) yerləşən mürəkkəb konturların effektiv frezlənməsi alətin uzunluğunun məhdud olmasına görə və ya da dəqiqlik baxımından mümkün deyildir. Belə səthlərin emalını elketroerrozion üsulu ilə aparmaq əlverişlidir. Bu üsulun ən çox tətbiq olunduğu sahə dəmir tərkibli metal formaların hazırlanmasıdır. Elektroerrozion üsulunda metalların emalının iki variantını göstərmək olar: elektrodla emal; məftillə emal. Bü iki kəsmə variantını birləşdirən onların eyni fiziki prinsipə malik olmasıdır. Elektroerrozion üsulu ilk dəfə olaraq rus alimləri Lazarenko B.R. və Zolotıx B.N. tərəfindən ixtira edilərək, onun elekrtotermiki nəzəriyyəsi işlənmişdir. Prosesin iş prinsipi emal olunan səthlərin elektrolit bir mühitdə erroziyasına, yəni aşınmasına əsaslanır.
Eyler üsulu
Ardıcıl yaxınlaşma üsulunda hər bir yaxınlaşmada müəyyən inteqrallar hesablanır. Əksər hallarda müəyyən inteqralları dəqiq üsullarla hesablamaq mümkün olmur və təqribi üsullardan istifadə olunur. Tutaq ki, y ′ ( x ) = f ( x , y ) {\displaystyle y^{\prime }(x)=f(x,y)} diferensial tənliyinin y ( x 0 ) = y 0 {\displaystyle y(x_{0})=y_{0}} başlanğıc şərtini ödəyən həllini [ a , b ] {\displaystyle [a,b]} parçasında tapmaq tələb olunur [ a , b ] {\displaystyle [a,b]} parçasını h {\displaystyle h} addımı ilə n {\displaystyle n} bərabər hissəyə bölək: h = b − a n , x i = x 0 + i h , ( i = 0 , 1 , 2 , … ) {\displaystyle h={\frac {b-a}{n}},x_{i}=x_{0}+ih,(i=0,1,2,\ldots )} [ x k , x k + 1 ] {\displaystyle [x_{k},x_{k+1}]} parçasında tənliyini inteqrallayaq. ∫ x k x k + 1 y ′ ( x ) d x = ∫ x k x k + 1 f ( x , y ) d x {\displaystyle \int \limits _{x_{k}}^{x_{k+1}}y^{\prime }(x)\,dx=\int \limits _{x_{k}}^{x_{k+1}}f(x,y)\,dx} y ( x ) | x k x k + 1 = ∫ x k x k + 1 f ( x , y ) d x ⇒ y ( x k + 1 ) = y ( x k ) + ∫ x k x k + 1 f ( x , y ) d x {\displaystyle y(x)|_{x_{k}}^{x_{k+1}}=\int \limits _{x_{k}}^{x_{k+1}}f(x,y)\,dx\Rightarrow y(x_{k+1})=y(x_{k})+\int \limits _{x_{k}}^{x_{k+1}}f(x,y)\,dx} (1) [ x k , x k + 1 ] {\displaystyle [x_{k},x_{k+1}]} parçasında f ( x , y ) {\displaystyle f(x,y)} funksiyasının qiymətini sabit, ( x k , y k ) {\displaystyle (x_{k},y_{k})} nöqtəsindəki qiymətinə bərabər götürsək (1) aşağıdakı kimi yazılar: y ( x k + 1 ) = y ( x k ) + f ( x k , y k ) ( x k + 1 − x k ) = y ( x k ) + f ( x k , y k ) h {\displaystyle y(x_{k+1})=y(x_{k})+f(x_{k},y_{k})(x_{k+1}-x_{k})=y(x_{k})+f(x_{k},y_{k})h} (2) (2) ( x k , y k ) {\displaystyle (x_{k},y_{k})} nöqtəsində tənliyin y ( x ) {\displaystyle y(x)} həllinə çəkilmiş toxunanın tənliyidir. Sanki [ x k , x k + 1 ] {\displaystyle [x_{k},x_{k+1}]} parçasında tənliyin həlli abisisi x k {\displaystyle x_{k}} olan nöqtədə çəkilmiş toxunana paralel və ( x k , y k ) {\displaystyle (x_{k},y_{k})} nöqtəsindən keçən düz xətt parçası ilə əvəz olunur. Nəticədə həllə yaxın sınıq xətləri alırıq ki, bu sınıq xəttə Eyler sınıq xətti deyilir.
Keys üsulu
Keys üsulu və ya Keys metodu (ing. Case method; case-study) Hadisənin öyrənilməsi (case study) hadisəni yaradan səbəblərin, onun hərəkət verici amillərinin aşkara cıxarılması məqsədilə bu hadisənin bütün dərinliyi ilə tədqiq edilməsindən ibarətdir. Hadisə öyrənilməsi metodundan təhsil, sosial psixologiya, sosiologiya, siyasət, iqtisadiyyat kimi sahələrdə istifadə edilir. Məsələn, sahibkar olmaq istəyən bir şəxsin, öz işini açarkən keçdiyi mərhələləri öyrənmək və analiz etmək bu sahədəki çatışmazlıqlar və hansı addımlar atılarsa onların aradan qaldırıla bıləcəyi haqqında qiymətli məlumatlar verə bilər. Psixologiya sahəsində son dövrlərə qədər hadisənin öyrənilməsindən ən çox istifadə olunan yer neyropsixologiya idi. Tədqiqiatçılar beynin müxtəlif sahələrinin zədələnməsinə məruz qalmış insanların davranışındakı dəyişiklikləri öyrənərək sinir sisteminin fəaliyyəti haqqında dəyərli məlumatlar əldə edə bilirlər. Gündəlik psixologiyada isə insan davranışının, onun səbəblərinin öyrənilməsi üçün uzun müddət ümumiyyətlə kəmiyyət tədqiqiatlarına üstünlük verilmişdir, həm də tədqiqatlar daha çox laboratoriya təcrübələri üzərində qurulmuşdur. Lakin son illər təbii şəraitdə aparılan və ümumi şəkildə çöl tədqiqatları adlanan üsullara diqqət yetirilməyə başlandı. Bir çox tədqiqatçılar psixologiyanın gələcəyinin məhz təbii şəraitdə aparılan tədqiqatlar üzərində qurulacağını ehtimal edirlər. Tədqiqat metodlarına aid ədəbiyyatda hadisənin öyrənilməsi üsulunun bir neçə tipi göstərilir.
Kramer üsulu
Kramer üsulu — xətti cəbrdə xətti tənliklər sisteminin həlli üsuludur. Bu üsul 2021-ci ildə onu dərc etmiş Qabriel Kramerin adına adlandırılıb. Lakin Kolin Maklaurin də həmçinin bu üsulu 1748-ci ildə dərc etmişdi (və ehtimalən 1729-cu ildə bu üsul barədə bilirdi). Tutaq ki, kvadrat xətti tənliklər sistemi (<yəni n {\displaystyle n} məchullu n {\displaystyle n} tənlik) verilmişdir { u j a 11 x 1 + a 12 x 2 + … + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + … + a 2 n x n = b 2 … … … … … a m 1 x 1 + a m 2 x 2 + … + a m n x n = b m , ( 1 ) {\displaystyle {\begin{cases}uja_{11}x_{1}&+a_{12}x_{2}&+\dots &+a_{1n}x_{n}&=b_{1}\\a_{21}x_{1}&+a_{22}x_{2}&+\dots &+a_{2n}x_{n}&=b_{2}\\\dots &\dots &\dots &\dots &\dots \\a_{m1}x_{1}&+a_{m2}x_{2}&+\dots &+a_{mn}x_{n}&=b_{m}\end{cases}},(1)} və əsas matrisin determinantı sıfırdan fərqlidir. Δ = | a 11 a 12 … a 1 n a 21 a 22 … a 2 n … … … a n 1 a n 2 … a n n | ≠ 0 , ( 2 ) {\displaystyle \Delta ={\begin{vmatrix}a_{11}&a_{12}\dots &a_{1n}\\a_{21}&a_{22}\dots &a_{2n}\\&\dots &\dots &\dots \\a_{n1}&a_{n2}\dots &a_{nn}\\\end{vmatrix}}\neq 0,(2)} Tutaq ki, x 1 , x 1 , . . . , x n {\displaystyle x_{1},x_{1},...,x_{n}} (1) sisteminin hər hansı bir həllidir. Onda (1) bərabərliklərini uyğun olaraq əsas matrisin Δ {\displaystyle \Delta } determinantının hər hansı j {\displaystyle j} sütunun ( j = 1 , n → {\displaystyle j={\overrightarrow {1,n}}} ) elementlərinin A 1 j , x 1 j , . .
Kütuclular üsulu
“kütuclular" üsulu – ədədin yaddaşda saxlanma üsulu; bu halda ən qiymətli bayt ədədin birinci baytı olur. Məsələn, onaltılıq A02B ədədi yaddaşda “kütuclular” üsulu ilə A02B şəklində, “sivriuclular” üsulu ilə isə 2BA0 şəklində saxlanılır. Birinci üsuldan Motorola şirkətinin, ikincidən isə Intel şirkətinin mikroprosessorlarında istifadə olunur. Bu termin öz mənşəyini Conatan Svift’in “Qulliverin səyahəti” əsərindən alır: imperatorun əmrinə görə yumurtanı yalnız sivri icundan sındırıb yemək olar. Bu əmrə tabe olmaqdan imtina edən bir qrup adamı “kütuclular” adlandırırdılar. İsmayıl Calallı (Sadıqov), “İnformatika terminlərinin izahlı lüğəti”, 2017, “Bakı” nəşriyyatı, 996 s.
Makrometeorologiya üsulu
Makrometeorologiya üsulu vasitəsilə atmosferin ümumi sirkulyasiyasının xarakterinin uzunmüddətli dəyişməsinin və bununla əlaqədar olaraq müxtəlif coğrafi rayonlarda havanın proqnozunu hazırlamaq mümkündür. Sinoptik meteorologiyada olduğu kimi, makrometeorologiyada da bir çox hallarda sinoptik üsuldan istifadə edilir. Makrometeorologiya üsulunu sinoptik üsuldan fərqləndirən bir sıra xüsusiyyətlər mövcuddur. Bunlara öyrənilən proseslərin zaman və məkana görə müxtəlif miqyasda dəyişməsini aid etmək olar. Məsələn, qısamüddətli proqnoz ucun ilkin yanaşmada baxılan nisbətən böyük olmayan rayonun cari və bir-iki gün əvvəlki sinoptik və yüksəklik xəritələrinin təhlili ilə kifayətlənmək olursa, uzunmüddətli proqnozlar ucun bunlar azdır. Burada bir necə günü, həftəni, hətta bir necə ayı əhatə edən proseslərin təhlili lazımdır.
Müqayisə üsulu
Nyuton üsulu
Nyuton üsulu (həmçinin Nyuton-Rafson üsulu) — riyazi analizdə İsaak Nyuton və Cozef Rafsonun adına adlandırılmış, real dəyərə malik funksiyaların köklərinin ardıcıl olaraq daha yaxşı həllini tapmaq üsulu. Bu, kökün tapılması alqoritmlərindən biridir. Nyuton üsulunun bir dəyişənlə tətbiqi aşağıdakı kimidir: Bu üsul x dəyişəni olan f funksiyası, həmin funksiyanın f ′ törəməsi və f funksiyasının kökü kimi ilkin x0 fərziyyəsi ilə başlayır. Əgər bu funksiya formulanın törəməsindəki fərziyyələri qane edirsə və ilkin fərz edilən həll yaxındırsa, o zaman x1 daha yaxşı təxmini həll tapmaq üçün x 1 = x 0 − f ( x 0 ) f ′ ( x 0 ) . {\displaystyle x_{1}=x_{0}-{\frac {f(x_{0})}{f'(x_{0})}}\,.} istifadə edilir. Həndəsi olaraq, (x1, 0), (x0, f (x0))-də f funksiyasının x oxu ilə kəsişməsidir Bu proses daha dəqiq həll tapılana kimi aşağıdakı kimi davam etdirilir: x n + 1 = x n − f ( x n ) f ′ ( x n ) {\displaystyle x_{n+1}=x_{n}-{\frac {f(x_{n})}{f'(x_{n})}}\,} İkinci tərtib törəmənin köməyi ilə minimumun axtarılması üsullarına iki tərtibli üsullar deyilir. Bu üsullarda funksiyanın Teylor sırasına ayrılışında kvadratik hissədən istifadə edilir. Nyuton üsulu da məhz ikinci tərtib üsullara, yəni minimallaşdırılan funksiyanın ikinci tərtib törəmələrindən istifadə edilən üsullara aiddir. Bu üsulda da məqsəd funksiyanın Teylor ayrılışının kvadratik hissəsindən istifadə etməkdir. Teylor ayrılışının kvadratik hissəsi funksiyanı bu ayrılışın xətti hissəsinə nisbətən daha dəqiq approksimasiya etdiyindən gözləmək olar ki, ikinci tərtib üsullar birinci tərtib üsullara nisbətən daha sürətlə yığılır.
Pomidor üsulu
Pomidor üsulu, 1990-ci illərin əvvəlində, Françesko Kirillo tərəfindən təklif olunan zamanın idarəolunması üsuludur. Bu üsul, tapşırığın, "pomidor" adlanan, qısa fasilərlə müşahidə olunan, 25 dəqiqəlik aralıqlara bolünməsini təklif edir. Hər intervalın və umümiyyətlə üsulun "pomidor" adlandırılması, Kirillonun tələbə olduğu vaxtlarda işlətdiyi pomidor formasında taymerin şərəfinə idi . Pomidor üsulü növbəti mərhələrdən ibarətdir: İcra edəcəyiniz tapşırığı müəyyən edin və alt tapşırıqlara bölün. Hər bir alt tapşırığa 25 dəqiqəlik ara (pomidor) ayrılır Taymeri 25 dəqiqəyə qoyun. Taymer zəng çalana qədər fikrinizi yayındırmadan işləyin. Fikrinizi yayındıran amilləri vərəqdə qeyd edin və işləməyə davam edin. Hər 25 dəqiqəlik ara sonlananda, pomidoru bitirdiyiniz haqqda qeyd aparın və qısa fasilə verin (3-5 dəqiqə), Hər 4-cü pomidordan sonra uzun fasilə verin (15-30 dəqiqə). Planlaşdırma, izləmə, qeyd etmə, emal etmə və görüntüləmə üsulun əsaslarını təşkil edir . Planlaşdırma mərhələsində tapşırıqlar, onları tapşırıq siyahısında qeyd etməklə prioritetləşdirilir.
Qauss üsulu
Qauss üsulu — Xətti tənliklər sistemini həll etmək üçün klassik üsul. Bəzən bu üsula əmsalları yoxetmə üsulu da adlanır. Tutaq ki, kvadrat xətti tənliklər sistemi verilmişdir { a 11 x 1 + a 12 x 2 + … + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + … + a 2 n x n = b 2 … … … … … a m 1 x 1 + a m 2 x 2 + … + a m n x n = b m , ( 1 ) {\displaystyle {\begin{cases}a_{11}x_{1}&+a_{12}x_{2}&+\dots &+a_{1n}x_{n}&=b_{1}\\a_{21}x_{1}&+a_{22}x_{2}&+\dots &+a_{2n}x_{n}&=b_{2}\\\dots &\dots &\dots &\dots &\dots \\a_{m1}x_{1}&+a_{m2}x_{2}&+\dots &+a_{mn}x_{n}&=b_{m}\end{cases}},(1)} Bu sistemin həlli üçün məchulun yox edilməsi və ya Qausus üsulunun mahiyyəti aşağıdakı kimidir. Tutaq ki, a 11 ≠ 0 {\displaystyle a_{11}\neq 0} . Onda sistemin birinci tənliyinin hər iki tərəfini a 21 a 11 {\displaystyle \ {\frac {a_{21}}{a_{11}}}} vuraraq alınan a 21 x 1 + a 12 a 21 a 11 x 2 + a 1 n a 21 a 11 x n = a 21 a 11 b 1 {\displaystyle a_{21}x_{1}+\ {\frac {a_{12}a_{21}}{a_{11}}}x_{2}+\ {\frac {a_{1n}a_{21}}{a_{11}}}x_{n}=\ {\frac {a_{21}}{a_{11}}}b_{1}} tənliyini sistemin ikinci tənliyindən tərəf-tərəfə çıxaq. Aldığımız tənlikdə x 1 {\displaystyle x_{1}} məchulu iştirak etmir. a 22 ′ x 2 + a 23 ′ x 3 + . . . + a 2 n ′ x n = b 2 ′ {\displaystyle a'_{22}x_{2}+a'_{23}x_{3}+...+a'_{2n}x_{n}=b'_{2}} Sonra sistemin birinci tənliyinin hər iki tərəfini a 21 a 11 {\displaystyle \ {\frac {a_{21}}{a_{11}}}} vuraraq alınan tənliyini sistemin üçüncü tənliyindən tərəf-tərəfə çıxaq.
Radiolokasiya üsulu
Radiolokasiya üsulu – atmosferdə yağıntıların və buludların, həmçinin təhlükəli atmosfer hadisələrinin yerlərinin, hərəkət istiqamətlərinin, intensivliyinin radiolokasiya üsulu ilə təyin edilməsinə əsaslanmışdır.
Test üsulu
Test üsulu ilk dəfə olaraq 1969-cu ildə ABŞ-də orta məktəb məzunlarının bilik səviyyəsinin monitorinq əsaslarla qiymətləndirilməsi məqsədilə tətbiq olunub. 1970-ci illərdə ABŞ-nin bu sahədəki təcrübəsindən Türkiyədə eksperiment kimi ali məktəbə tələbə qəbulu prosesinin təkmilləşdirilməsində istifadə edilib. Azərbaycanda Test üsulu ilk dəfə olaraq 1992-ci ildən ali məktəbə tələbə qəbulu prosesində sonradan isə orta ixtisas məktəblərinə qəbulda da tətbiq olunub. Buraxılış imtahanları təhsil pillələri üzrə (9 və 11-ci siniflər) testlər vasitəsilə mərkəzləşdirilmiş qaydada aparılır, nəticələri xüsusi prosedurlar və texniki vasitələr tətbiq edilməklə, Azərbaycan Respublikasının Təhsil Nazirliyində qiymətləndirilir, məzunlara şəhadətnamə və attestatların verilməsi təmin edilir. Azərbaycanda Test üsulunun tətbiqi ilk dəfə 1992-ci ilin May ayinin 28-də Azərbaycan Ana Torpaq Partiyasında bu təşəbbüs müzakire olunmuşdur. "AATP Azərbaycanda rüşvətsiz tələbə qəbulunu gerçəkləşdirmək üçün test üsulunun tətbiq olunmasını 28 may 1992-ci ildə müzakirə edərək bunu ən vacib problem sayaraq o zamankı parlament sədri İsa Yunisoğlu Qəmbər ilə məsləhətləşib təşəbbüs qaldıran ilk partiya olub." 1960-80-ci illerde 1992-ci ilədək ali və orta ixtisas məktəblərinə tələbə qəbulunun qanunsuz yollarla (hökumət təmsilçilərinin təzyiqilə, vəzifəli şəxslərin təsirilə və kütləvi rüşvətxorluqla) ədalətsiz keçirilməsi milli şüurumuzun inkişafına 20-ci esrdə ən çox ziyan vurmuş amillərdənir. Keçmiş Sovet İttifaqının ərazisində TEST ÜSULU ilə rüşvətsiz tələbə qəbulunun 1992-ci ildən indiyədək əsasən Azərbaycanda keçirilməsi yaxın gələcəkdə xalqımızın əsgi sovet cumhuriyyətlərindəki xalqlara nisətən rəqabət qabiliyyətinin daha da artacagına inam yaradır. Test Üsulunun 1992-ci ildən indiyədək 20 dəfə əsasən uğurlu Tətbiqi xalqımızın mədəni səviyyəsinin fəxr olunacaq bir göstəricisidir. 1992-ci ildə Müsavat başqanının sabiq I müavini, Müsavat Partiyasının üzvlərinlərindən biri Vurğun Əyyub Azərbaycan Tarixində Ən Böyük İslahatın ilk dəfə keçirilməsində fəal iştirak edib. 1992-93-cü illərdə Vurğun Əyyub TQDK-ya rəhbərlik edib.
Titrəmə (üsulu)
Titrəmə (en.dithering), (ru.дрожание) – boz rəngin çalarlarının (monoxrom displey və ya printerdə), yaxud tamamlayıcı rənglərin (rəngli displey və ya printerdə) dəyişilməsi illüziyasını yaratmaq üçün kompüter qrafikasında tətbiq olunan üsul. Bu üsul ona əsaslanır ki, görüntünün hissələrinə bu və ya başqa rəng naxışlarını əmələ gətirən nöqtələr qrupu kimi baxılır. Titrəmə üsulu ilə yaradılmış görüntülər yarımton (HALFTONE) görüntülərə və müəyyən dərəcədə puantilizm (POINTILLISM) texnikası ilə işlənmiş rəsmlərə çox yaxındır; titrəmə, insan gözünün, müxtəlif rəngli ləkələri qaralamaqla onların təsirini ortalaşdırmıq və onları qavranılan bir çalar və ya rənglə qatışdırmaq xassəsindən istifadə edir. Verilmiş sahənin daxilində olan qara və ağ nöqtələrin nisbətindən asılı olaraq ümumi effekt bu və ya başqa boz rəng çalarını verəcək. Analoji olaraq, ağ nöqtələrlə səpələnmiş qırmızı nöqtələr çəhrayı rəngin çalarlarının dəyişilməsi illüziyasını yaradacaq. Titrəmədən kompüter qrafikasında daha yüksək realizm vermək üçün və çözmə imkanı aşağı olduqda əyrilərin və diaqonal xətlərin girintili-çıxıntılı qıraqlarını hamarlamaq (ALIASING) üçün istifadə olunur. İsmayıl Calallı (Sadıqov), "İnformatika terminlərinin izahlı lüğəti", 2017, "Bakı" nəşriyyatı, 996 s.
Yakobi üsulu
Yakobi üsulu — rəqəmsal xətti cəbrdə diaqonal dominant xətti bərabərliklərin həllinin tapılması alqoritmi. Hər bir diaqonal element həll edilir və təxmini dəyər daxil edilir. Proses həllə yaxınlaşana kimi davam etdirilir. Bu üsula Karl Qustav Yakob Yakobinin adı verilib. Fərz edək ki, A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } n dərəcəli xətti bərabərliklərdir, burada: A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] , x = [ x 1 x 2 ⋮ x n ] , b = [ b 1 b 2 ⋮ b n ] . {\displaystyle A={\begin{bmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{n1}&a_{n2}&\cdots &a_{nn}\end{bmatrix}},\qquad \mathbf {x} ={\begin{bmatrix}x_{1}\\x_{2}\\\vdots \\x_{n}\end{bmatrix}},\qquad \mathbf {b} ={\begin{bmatrix}b_{1}\\b_{2}\\\vdots \\b_{n}\end{bmatrix}}.} Sonra A matrisi diaqonal D komponentinə və onun qalığı R matrisinə bölünür: A = D + R where D = [ a 11 0 ⋯ 0 0 a 22 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a n n ] and R = [ 0 a 12 ⋯ a 1 n a 21 0 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ 0 ] . {\displaystyle A=D+R\qquad {\text{where}}\qquad D={\begin{bmatrix}a_{11}&0&\cdots &0\\0&a_{22}&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &a_{nn}\end{bmatrix}}{\text{ and }}R={\begin{bmatrix}0&a_{12}&\cdots &a_{1n}\\a_{21}&0&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{n1}&a_{n2}&\cdots &0\end{bmatrix}}.} Bunun həlli təkrarlanmaqla belə tapılır x ( k + 1 ) = D − 1 ( b − R x ( k ) ) , {\displaystyle \mathbf {x} ^{(k+1)}=D^{-1}(\mathbf {b} -R\mathbf {x} ^{(k)}),} burada x ( k ) {\displaystyle \mathbf {x} ^{(k)}} , x {\displaystyle \mathbf {x} } -nin k dərəcəli approksimasiyası yaxud təkrarlanması və x ( k + 1 ) {\displaystyle \mathbf {x} ^{(k+1)}} , x {\displaystyle \mathbf {x} } -nin növbəti yaxud k + 1 dərəcəli təkrarlanmasıdır. Element əsaslı formula beləcə aşağıdakı kimidir: x i ( k + 1 ) = 1 a i i ( b i − ∑ j ≠ i a i j x j ( k ) ) , i = 1 , 2 , … , n . {\displaystyle x_{i}^{(k+1)}={\frac {1}{a_{ii}}}\left(b_{i}-\sum _{j\neq i}a_{ij}x_{j}^{(k)}\right),\quad i=1,2,\ldots ,n.} xi(k+1) hesablanması x(k)-də özündən başqa hər bir elementin olmasını tələb edir. Xətti bərabərlik sistemi A x = b {\displaystyle Ax=b} formasında və onun ilkin fərz edilən həlli x ( 0 ) {\displaystyle x^{(0)}} verilib A = [ 2 1 5 7 ] , b = [ 11 13 ] and x ( 0 ) = [ 1 1 ] .
İstehsal üsulu
İstehsal üsulu (alm. Produktionsweise‎) — Marksizmə görə, məhsuldar qüvvələrin və onların şərtləndirdiyi istehsalat münasibətlərinin vəhdəti. İçtimai istehsal üsulları, bir tərəfdən — müvafiq istehsalat texnoloqiyasının tarixi tipinə görə (məhsuldar qüvvələr), o biri tərəfdən — istehsal və bölgü əsnasındakı istehsal şəraitinə və vasitələrinə olan hakim münasibətlərin müvafiq iqtisadi gerçəkləşdirilməsi tipinə görə(istehsalat münasibətləri) fərqlənirlər. Hakim istehsal üsulu ictimai-iqtisadi formasiyanın özülü(bazisi) sayılır.
Fontan (Dənizkənarı Alplar)
Fontan (fr. Fontan) — Provans-Alp-Kot-d'Azür regionunun, Fransanın cənub-şərqində yerləşən kommun, Dənizkənarı Alplar departamenti, Nitsa dairəsi, Kont kantonu . Mart 2015-ci ilə qədər kommun inzibati olaraq ləğv edilmiş Brey-syur-Ruaya kantonunun (Nitsa dairəsi) bir hissəsi idi. Kommunanın sahəsi — 49,61 km², əhalisi — 300 nəfərdir (2006) artım tendensiyası ilə: 291 nəfər (2012), əhalinin sıxlığı 5,9 nəfər / km²-dir. 2011-ci ildə əhalinin sayı — 259 nəfər təşkil edirdi, 2012-ci ildə isə — 291 nəfər.
Infraqırmızı spektroskopiya üsulu ilə üzvi maddələrin tədqiqi
İnfraqırmızı spektroskopiya — infraqırmızı şüaların təsiri ilə maddələrin tərkibindəki dəyişikliklərin təyin edilməsində istifadə olunan spektral analiz üsullarından biridir. Hələ 1882–1900-cü illərdə Edvard Festinq 52 birləşmənin "IQ" spektrini almış və müşahidə olunan udmanın bu molekullardakı funksional qruplarla əlaqəsini göstərmişdir. Bu üsulun daha da təkmilləşməsində Amerika fiziki Uilyam Kobelsin böyük əməyi oldu. Hələ 1903-cü ildə o, NaCl prizmasından istifadə edərək yüzlərlə üzvi və qeyri-üzvi maddələrin tam infraqırmızı spektrlərini almışdır. İQ spektroskopiyanın inkişafı İQ interferometrlərinin meydana gəlməsi ilə bağlı olmuşdur ki, bunlar da 70-ci illərdə təkmilləşərək kompüterləşmiş və Furye çevrici ilə təchiz olunmuş halda dünya bazarlarına çıxarılmışdır. Spektrlərdəki ehtizazi və fırlanma dalğa uzunluğu 1–50µ arasındadır. Mineralogiyada və kristalloqrafiyada infraqırmızı spektroskopiya mineral qarışıqlarının kəmiyyət analizi və tutuşdurulması; mineralın quruluşundakı H2O-nun təbiətini müəyyən etmək, onların əmələ gəlməsində bir kriteriya kimi quruluşun nizamlanma dərəcəsini araşdırmaq üçün və başqa hallarda istifadə olunur. Spektroskopiya maddə ilə elektromaqnit şüaların qarşılıqlı təsirini, maddənin struktur quruluşunu və onu təşkil edən atomların və molekulların öyrənilməsidir. Spektroskopiya elektromaqnit şüalanmanın – qamma şüaların, X-şüaların (rentgen şüaları), infraqırmızı şüaların, görünən və ultrabənövşəyi şüaların, mikrodalğanın və radio tezliklərin bütün sahəsini istifadə edir. İnfraqırmızı spektroskopiya spektroskopiyanın bir bölməsidir ki, infraqırmızı diapazonda üzvi və qeyri-üzvi birləşmələrin buraxılma, udulma və əksolunma spektrləri əldə edilir və araşdırılır.
Hidravlik parçalama üsulu
Hidravlik parçalama üsulu və ya frekinq — şist nefti çıxarma üsulu. Frekinq üsulunda su və kimyəvi maddələr yüksək təzyiqlə qazma quyularına vurulur. Bu metod ekologiyaya, xüsusən içməli suyun çirklənməsinə səbəb ola bilər. Bu metod müxtəlif təbii kataklizmlərə səbəb olur. Frekinq metodunun tətbiqi 2013-cü ildə ABŞ-nin Ohayo ştatında çoxsaylı zəlzələlərə gətirib çıxarıb.
Kompression-distraksion üsulu
Kompression-distraksion üsulu — Sümüklərin sınığı qədim zamanlardan çox zəhmət tələb edən, çox vaxt müvəffəqiyyətsizliklə nəticələnən xəsarətlərdən sayılır. Keçmiş zamanlarda sınıqları müalicə etmək üçün yumurta, saqqız sarğılarından, adi taxta parçalarından, palma yarpağından istifadə edilmişdir. Bu əməliyyatı sadə sınıqçılar və yaxud xalq həkimləri yerinə yetirirdilər. Naşı adamların müalicə etdiyi xəstələrin çoxu ya axsayır, ya da onlarda başqa fəsadlar baş verirdi. Açıq sınıqların müalicəsi daha çətin olurdu. Çox hallarda yaralar irinləyir, irin sümüyə keçir və tibbi dilində desək, “osteomielit” xəstəliyi əmələ gəlir. İlk dəfə məşhur rus cərrahı, müasir cərrahiyyənin atası Nikolay Piroqov sümük sınıqlarında gips sarğılarından istifadə etmişdi. Bu üsul cərrahiyyədə bir inqilab olub, hələ indi də istifadə edilir. Sonra fransız alimləri daimi dartma üsulunu tətbiq etməyə başladılar ki, bu, bir çox üstün cəhətlərə malikdir. Xəstə bir qədər hərəkətli olur və bir çox fəsadların qarşısı alınır.
Maqnit çattəyini üsulu
Maqnit çattəyini üsulu ferromaqnit materiallarda səthə və ya ona yaxın yerləşən çatların maqnit sahəsinin köməyi ilə aşkara çıxarılmasına xidmət edir. Daxili strukturunda xəta olmayan ferromaqnit materiallarda maqnit xətləri heç bir maneəyə rast gəlmədən səlis olurlar. Eninə çatlar maqnit xətlərini pozaraq onu kənara yönəldir və burada meyillənmə sahəsi yaradırlar. Xətalı yerləri göstərmək üçün ferromaqnit dəmir oksidi tozundan istifadə olunur. Bu üsulla eni 10-3 və 10-4 mm arasında yerlşən çatı təyin etmək olur. Yüksək maqnit sahəsi tətbiq etməklə səthdən 8 mm dərinliyə qədər yoxlama sahəsini artırmaq mümkündür. Yoxlanan hissənin maqnitləşdirilməsi üçün sabit və dəyişən cərəyanla yaradılan maqnit sahələrindən istifadə olunur. Üsullardan biri ondan ibarətdir ki, hissə nal formalı metalın köməyi ilə yaradılmış maqnit sahəsində yerləşdirilsin. Daha başqa bir üsul hissənin bir başa elektrik cərəyanı şəbəkəsinə qoşulmasıdır. Qütb maqnitləşdirmənin köməyi ilə səthdə eninə yerləşmiş çatlar üzə çıxarıla bilirsə, çevrə boyunca cərəyanla induksiya edilmiş maqnit sahəsi ilə uzununa istiqamətdə olan çatları da tapmaq mümkündür .
Montan
Montan — Bolzano şəhərinin təxminən 20 kilometr cənubunda İtaliyanın şimalındakı Cənubi Tirol əyalətində bir bələdiyyə. All demographics and other statistics: Italian statistical institute Istat.
Crucifera fontana
Adi acıqıjı (lat. Nasturtium officinale) — bitkilər aləminin kələmçiçəklilər dəstəsinin kələmkimilər fəsiləsinin acıqıjı cinsinə aid bitki növü. Hündürlüyü 8-60 sm olan çılpaq, çoxillikbitkidir. Gövdəsi boruvari, şırımlıdır. Enli, saplaqlı yarpaqları lələkvari parçalanmış, 3-7 cüt uzunsov yumurtavari və ya diş-dişli oval formalı hissələridən ibarətdir. Çiçəklərin ləçəkləri 4–6 mm ağdırnaqcıqlıdır, qutucuqdan 2 dəfə uzundur. Meyvə çiçək-saplaqları nazik, uzundur. Buynuzcuq meyvələrinin uzunluğu 10–20 mm, eni 2 mm azacıq köpmüş və əyilmiş silindrik formalıdır. Toxumları xırda, iki cərgədir. May-iyulda çiçəkləyir, iyul-avqustda meyvə verir.
Fonten (İzer)
Fonten (fr. Fontaine) — Fransada kommuna, Rona-Alplar regionunda yerləşir. Departament — İzer. Fonten-Verkor və Fonten-Sesine kantonlarına daxildir. Kommunanın dairəsi — Qrenobl. INSEE kodu — 38169. Kommunanın 2007-ci il üçün əhalisi 22394 nəfər təşkil edirdi. Kommuna dəniz səviyyəsindən 202 qədər metr yüksəklikdə yerləşir. Kommuna Parisdən təxminən 480 km cənub-şərqdə, Liondan 95 km cənub-şərqdə, Qrenobldan 4 km qərbdə yerləşir.
Jüst Fonten
Jüst Fonten (ing. Just Fontaine; 18 avqust 1933[…], Mərrakeş[d], Mərakeşdəki Fransa protektoratı[d] – 28 fevral 2023, Tuluza, Fransa) ― hücumçu mövqeyində oynamış Fransa futbolçusu və məşqçisi. Məhsuldarlığı ilə seçilən o, 1958 FİFA Dünya Kubokunda 6 oyuna 13 qol vurdu və bununla da bir Dünya Kuboku turnirində ən çox qol vuran oyunçu kimi tarixə düşdü. 2004-cü ildə Pele, FIFA mükafatlandırma mərasimində onu 125 Ən Böyük Yaşayan Futbolçulardan biri adlandırdı. Atası fransız, anası ispan olan Jüst Fonten Mərakeş şəhərində anadan olmuşdur. Daha sonra o, Kasablankaya köçmüş və orada Lyautey liseyində təhsil almışdır. Fonten həvəskar karyerasına 1950–1953-cü illərdə oynadığı "MİB Kasablanka"da başladı. 1953-cü ildə o, "Nitsa" ilə müqavilə imzaladı və üç mövsümdə klubun heyətində 44 qol vurdu. 1956-cı ildə "Reyms"ə keçidi baş tutdu və 1959–60 mövsümündən Raymon Kopa ilə tandem qurdu. Fonten "Reyms"də keçirdiyi altı mövsüm ərzində 121 qol vurdu.
Hüsülü
Hüsülü (Ağcabədi) — Azərbaycanın Ağcabədi rayonunda kənd. Hüsülü (Laçın) — Azərbaycanın Laçın rayonunda kənd.
Susulu
Udulu
Udullu, Udulu — Azərbaycan Respublikasının Şabran rayonunun inzibati ərazi vahidində kənd.
Uşilu
Ər Uşilu Şanyü (v. e.ə. 101) — Hunların yeddinci şanyüsü. Ər Uşilu Şanyü uşaq yaşda taxta çıxmış və cəmi 3 il hakimiyyətdə qalmışdı. Onun dövründə Hunlar Çinlilərə bir çox döyüşdə qalib gəlmişdi. Özü isə eramızdan əvvəl 102-ci ildə xəstələnərək çox cavan yaşda öldü.
Meteorololji müşahidə üsulu
Meteorololji müşahidə üsulu – meteoroloji kəmiyyətlərin ölçülməsi və atmosfer hadisələrinin qeydə alınması üsuludur. Meteoroloji kəmiyyətlərə havanın temperaturu və rütubətliyi, atmosfer təzyiqi, küləyin surəti və istiqaməti, buludların miqdarı və hündürlüku, yağıntıların miqdarı, istilik axınları və s. aiddir. Bunlara atmosferin xassələrini və ya atmosfer proseslərini birbaşa əks etdirməyən, lakin onlarla sıx əlaqəli olan aşağıdakı kəmiyyətləri də aid etmək olar: torpağın və suyun səth qatının temperaturu, buxarlanma, qar örtüyünün hündürlüyü və vəziyyəti, günəş parlaqlığının davamiyyəti və s. Atmosfer hadisələrinə tufan, çovğun, duman və bir sıra optik hadisələr aiddir. Ən tam və dəqiq müşahidələr meteoroloji və aeroloji rəsədxanalarda aparılır.
Usublu
Yusifli — Azərbaycan Respublikasının Ağdam rayonunun Üçoğlan kənd inzibati ərazi dairəsində kənd. Kəndin adı Qarabağda yaşamış Kəbirli elinin Qərvəndli tayfasının Yusifli tirəsinin adındandır. Qərvəndli tayfası Ətyeməzli, Yusifli, Səfilər, Ballılar, Mərəbasanlar və Bozallar tirələrindən ibarət idi.
İli Çayı sülhü
İli Çayı sülhü İli Çayı sahilində Yükük şad və Xallıq İşbara Yabqu xaqan tərəfindən Nuşibi qəbilə başçısı Kül-erkinin vasitəçiliyi ilə imzalanmışdı. Sülhün maddələrinə görə: 1. İli çayının şimalı Yükük şad və onu dəstəkləyən Tulu tayfalarına verildi. 2. İli çayının cənubu Xallıq İşbara Yabqu xaqan və onu dəstəkləyən Nuşibi tayfalarına verildi. Sülhün imzalanmasından 4 il sonra Yükük şad öz torpaqlarından imtina etdi və Künduz şəhərinə köçdü.