DÜZBUCAQLI PARÇALANMA

dağların düzbucaqlı parçalanması, çay şəbəkəsi iki bir-birinə perpendikulyar istiqamətdə yerləşərək dağ dərələrinin düzbucaqlı şəbəkəsini yaradır / məs: Cənubi Uralın qərb yamacında, Tyan-Şanın mərkəzində və s./. прямоугольное расчленение, решетчатое расчленение orthogonal dissection of mountains
DÜZ YAMAC
DÜZƏLMƏ
OBASTAN VİKİ
Düzbucaqlı
Düzbucaqlı — Bütün bucaqları düz bucaq olan paraleloqrama (90°) düzbucaqlı deyilir. Düzbucaqlı paraleloqramın xüsusi halı olduğu üçün onun bütün xassələrinə malikdir. Tərəfləri a və b olan düzbucaqlının perimetri 2(a+b)-yə, sahəsi isə ab-yə bərabərdir. Məsələn: "'Düzbucaqlının"' eni "2" uzunluğu isə "4" olarsa bu düzbucaqlının perimetri 2•("2"+"4")=2•6=12 olar. Bu düzbucaqlının sahəsi isə "2"•"4"=8 olar. Düzbucaqlı paralelpipedin12 tili var. Düzbucaqlının 2 simmetriya oxu var. •Diaqonallarının uzunluqları eynidir və kəsişmə nöqtəsində yarıya bölünür; •Diaqonallar tənbölən deyil; •Düzbucaqlının diaqonalının kvadratı onun iki bitişik tərəfinin kvadratları cəminə bərabərdir (Pifaqor teoreminə görə). Düzbucaqlınin qarşı tərəfləri bərabərdir. Daxili bucaqlarının cəmi 360°-dır (4•90°=360°).
Düzbucaqlı paralelepiped
Düzbucaqlı paralelepiped – Oturacağı düzbucaqlı olan düz paralelepipede düzbucaqlı paralelepiped deyilir.12 tili vardır və bir təpədən çıxan tillərinə onun ölçüləri deyilir. Bu ölçülər eni uzunluğu və hündürlüyüdür. Teorem: düzbucaqlı paralelepipedin dioqanılının kvadratı onun bir təpədən çıxan tillərinin(üç ölçüsünün) kvadratları cəminə bərabərdir. Düzbucaqlı paralelepiped ilə bağlı aşağıdakı düsturlar vardır. Düzbucaqlı paralelepipedin həcmi: V = a ⋅ b ⋅ c {\displaystyle V=a\cdot b\cdot c} Düzbucaqlı paralelepipedin tam səthinin sahəsi: S t a m = 2 ⋅ ( a ⋅ b + a ⋅ c + b ⋅ c ) {\displaystyle S_{tam}=2\cdot (a\cdot b+a\cdot c+b\cdot c)} Düzbucaqlı paralelepipedin yan səthinin sahəsi: S y a n = 2 ⋅ ( a ⋅ c + b ⋅ c ) {\displaystyle S_{yan}=2\cdot (a\cdot c+b\cdot c)} Düzbucaqlı paralelepipedin diaqonalları: d 2 = a 2 + b 2 + c 2 {\displaystyle d^{2}=a^{2}+b^{2}+c^{2}} a {\displaystyle a} və b {\displaystyle b} -oturacağın tərəfləri, c {\displaystyle c} — paralelepipedin tili, d {\displaystyle d} isə diaqonalıdır.
Düzbucaqlı trapesiya
Düzbucaqlı trapesiya — iki bucağı düz bucaq olan trapesiyaya deyilir. Düzbucaqlı trapesiyanın iki bucağı həmişə 90 dərəcə olur.
Düzbucaqlı üçbucaq
Düzbucaqlı üçbucaq—bucaqlarından biri düz bucaq (90⁰) olan üçbucağa deyilir. Düzbucaqlı üçbucaqda düz bucaq qarşısındakı tərəf hipotenuz, ona bitişik tərəflər, yəni iti bucaqlar qarşısında duran tərəflər isə katetlər adlanır. Pifaqor teoreminə görə düzbucaqlı üçbucaqda katetlərin kvadratları cəmi hipotenuzun kvadratına bərabərdir. a²+b²=c² Katetləri bərabər olan düzbucaqlı üçbucaq bərabəryanlı düzbucaqlı üçbucaq adlanır. Düzbucaqlı üçbucağın iti bucaqlarının cəmi 90°-yə bərabərdir. Düzbucaqlı üçbucağın xaricinə çəkilmiş çevrənin mərkəzi hipotenuzun orta nöqtəsidir. Bərabəryanlı düzbucaqlı üçbucağın iti bucaqlarının hər biri 45°-yə bərabərdir. Bərabəryanlı düzbucaqlı üçbucaqda hipotenuz katetin kök altında iki mislinə bərabərdir. Düzbucaqlı üçbucaqda 30 dərəcəli bucaq qarşısında duran katet hipotenuzun yarısına bərabərdir. Düzbucaqlı üçbucağın xaricinə çəkilmiş çevrənin radiusu hipotenuzun yarısına bərabərdir.
Qızıl düzbucaqlı
Qızıl bölgü (və ya qızıl nisbət) — riyaziyyat və incəsənətdə tətbiq olunur. İki ədəd o vaxt qızıl nisbətdə olur ki, ( φ {\displaystyle \varphi } ), onların cəminin daha böyüyünə nisbəti onlardan böyüyünün kiçiyinə nisbətinə bərabər olsun. Cəbri dildə aşağıdakı kimi yazılır: a + b a = a b ≡ φ , {\displaystyle {\frac {a+b}{a}}={\frac {a}{b}}\equiv \varphi ,} burada Yunan hərfi fi ( φ {\displaystyle \varphi } ) qızıl bölgünü bildirir və onun dəyəri: φ = 1 + 5 2 = 1.61803 39887 … . {\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}=1.61803\,39887\ldots .} XX əsrdən başlayaraq xeyli sənətkarlar, memarlar öz işlərini qızıl bölgüyə əsasən qurmağa çalışıblar. Xüsusən də, onlar qızıl düzbucaqlı formasında tikintilərə xüsusi yer ayırıblar. Qızıl düzbucaqlıda uzun tərəfin qısa tərəfə nisbəti qızıl bölgü əsasında qurulur. Qızıl bölgü tarixən insanlar tərəfindən istifadə edilməsinə baxmayaraq, ilk dəfə kim tərəfindən kəşf edildiyi haqqında dəqiq bir məlumat yoxdur. Euclid (e.ə. 365 – e.ə. 300), "Elementlər" adlı nəzəriyyəsində bir xətti 1.6180339… nöqtəsindən bölmək haqqında yazmış və bu xətti ekstrem və əhəmiyyətli nisbətdə bölmək deyə adlandırmışdı.
Parçalanma (roman)
"Parçalanma" (ing. Things Fall Apart) — Nigeriyalı yazıçı Çinua Açebenin romanı. Roman Nigeriyanın koloniyalaşdırılmaya qədər dövründən, yerli əhalinin avropalılarla ilk qarşılaşmasından bəhs edir. İlk dəfə 1958-ci ildə yayımlanmışdır. Əsər onlarla dilə çevrilmiş, 11 milyon tirajla satılmışdır.
Parçalanma (çoxalma)
Parçalanma (çoxalma) — Çoxhüceyrəli və ya səbəst orqanizmlərində parçalanma, bir orqanizmin fraqmentlərə bölündüyü qeyri-cinsi çoxalma və ya klonlaşmanın bir formasıdır. Bu fraqmentlərin hər biri orijinal orqanizmin klonları olan yetkin, tam yetkin fərdlərə çevrilir. Orqanizm tökülmək və ya asanlıqla parçalanmaq üçün xüsusi orqanlar və ya zonalar inkişaf etdirə bilər. Əgər parçalanma orqanizmin əvvəlcədən hazırlanması olmadan baş verərsə, onun çoxalma funksiyasını yerinə yetirməsi üçün hər iki fraqment tam orqanizmi bərpa edə bilməlidir. Çoxalma üsulu olaraq parçalanma filamentli siyanobakteriyalar, qəliblər, süngərlər, acoel yastı qurdlar, bəzi annelid qurdlar və dəniz ulduzları kimi orqanizmlərdə görülür. Göbələklər krallığının bir hissəsi olan qəliblər, mayalar və göbələklər hif adlanan kiçik saplar əmələ gətirir. Bu hiflər böyümək və mayalandırmaq üçün digər orqanizmlərin bədənindən qida və qida maddələri alırlar. Sonra bir parça hif qoparaq yeni bir fərdə çevrilir və dövr davam edir. Parçalanma bitkilərdə çox yayılmış vegetativ çoxalma növüdür. Bir çox ağaclar, kollar, ağacsız çoxilliklər və qıjılar rizomlar və ya stolonlar tərəfindən yeni köklü tumurcuqlar çıxararaq klon koloniyaları əmələ gətirir ki, bu da koloniyanın diametrini artırır.
Üfüqi parçalanma
Üfüqi parçalanma (rus. горизонтальное расчленение, ing. horizontal dissection of mountains) — dağlıq ölkələrdə müxtəlif dərəcəli silsilələrin, çay dərələrinin və digər oroqrafik elementlərin əmələ gətirdiyi forma. Radial (şüavari), lələkvari (köndələn), şəbəkəli, kulisvari parçalanma formaları ayrılır.
Yarım parçalanma müddəti
Yarım parçalanma müddəti (T1/2) — orqanizmdə dərman preparatının miqdarının 50%-ə (yarıya) qədər azalması üçün tələb olunan müddət və ya zaman. Müxtəlif dərman preparatlarında bu müddət müxtəlif olur. Beləki aspirin və ibuprofen preparatlarında yarım parçalanma müddəti təxminən 4, piroksikamda isə 24 saatdır.