Поиск по словарям.

Результаты поиска

OBASTAN VİKİ
Hiperbolik funksiyalar
Hiperbolik funksiyalar - elementar funksiyalar ailəsindəndir.Triqonometrik funksiyaların analoqu sayılır.Əsas Hiperbolik funksiyalar bunlardır: Hiperbolik sinus Hiperbolik kosinus Hiperbolik tangens Hiperbolik kotangens Tərs Hiperbolik funksiyalar isə bunlardır: Hiperbolik arksinus Hiperbolik arkskosinus Hiperbolik arkstangens Hiperbolik arkskotangens == Riyazi hesablamalarda == Hiperbolik funksiyalar aşağıdakı funksiyalardan ibarətdir: Hiperbolik sinus: sinh ⁡ x = e x − e − x 2 = e 2 x − 1 2 e x {\displaystyle \sinh x={\frac {e^{x}-e^{-x}}{2}}={\frac {e^{2x}-1}{2e^{x}}}} Hiperbolik kosinus: cosh ⁡ x = e x + e − x 2 = e 2 x + 1 2 e x {\displaystyle \cosh x={\frac {e^{x}+e^{-x}}{2}}={\frac {e^{2x}+1}{2e^{x}}}} Hiperbolik tangens: tanh ⁡ x = sinh ⁡ x cosh ⁡ x = e x − e − x e x + e − x = e 2 x − 1 e 2 x + 1 {\displaystyle \tanh x={\frac {\sinh x}{\cosh x}}={\frac {e^{x}-e^{-x}}{e^{x}+e^{-x}}}={\frac {e^{2x}-1}{e^{2x}+1}}} Hiperbolik kotangens: coth ⁡ x = cosh ⁡ x sinh ⁡ x = e x + e − x e x − e − x = e 2 x + 1 e 2 x − 1 {\displaystyle \coth x={\frac {\cosh x}{\sinh x}}={\frac {e^{x}+e^{-x}}{e^{x}-e^{-x}}}={\frac {e^{2x}+1}{e^{2x}-1}}} Hiperbolik sekans: sech x = ( cosh ⁡ x ) − 1 = 2 e x + e − x = 2 e x e 2 x + 1 {\displaystyle \operatorname {sech} \,x=\left(\cosh x\right)^{-1}={\frac {2}{e^{x}+e^{-x}}}={\frac {2e^{x}}{e^{2x}+1}}} Hiperbolik kosekans: csch x = ( sinh ⁡ x ) − 1 = 2 e x − e − x = 2 e x e 2 x − 1 {\displaystyle \operatorname {csch} \,x=\left(\sinh x\right)^{-1}={\frac {2}{e^{x}-e^{-x}}}={\frac {2e^{x}}{e^{2x}-1}}} Hiperbolik funksiyalar xəyali vahid (i) dairəsi ilə aşağıdakı kimi də ifade edilir: Hiperbolik sinus: sinh ⁡ x = − i sin ⁡ i x {\displaystyle \sinh x=-{\rm {i}}\sin {\rm {i}}x\!} Hiperbolik kosinus: cosh ⁡ x = cos ⁡ i x {\displaystyle \cosh x=\cos {\rm {i}}x\!} Hiperbolik tangens: tanh ⁡ x = − i tan ⁡ i x {\displaystyle \tanh x=-{\rm {i}}\tan {\rm {i}}x\!} Hiperbolik kotangens: coth ⁡ x = i cot ⁡ i x {\displaystyle \coth x={\rm {i}}\cot {\rm {i}}x\!} Hiperbolik sekans: sech x = sec ⁡ i x {\displaystyle \operatorname {sech} \,x=\sec {{\rm {i}}x}\!} Hiperbolik kosekans: csch x = i csc i x {\displaystyle \operatorname {csch} \,x={\rm {i}}\,\csc \,{\rm {i}}x\!} i, i2 = −1 - xəyali vahiddir. == Hiperbolik funksiyaların törəmələri == d d x sinh ⁡ x = cosh ⁡ x {\displaystyle {\frac {d}{dx}}\sinh x=\cosh x\,} d d x cosh ⁡ x = sinh ⁡ x {\displaystyle {\frac {d}{dx}}\cosh x=\sinh x\,} d d x tanh ⁡ x = 1 − tanh 2 ⁡ x = sech 2 x = 1 / cosh 2 ⁡ x {\displaystyle {\frac {d}{dx}}\tanh x=1-\tanh ^{2}x={\hbox{sech}}^{2}x=1/\cosh ^{2}x\,} d d x coth ⁡ x = 1 − coth 2 ⁡ x = − csch 2 x = − 1 / sinh 2 ⁡ x {\displaystyle {\frac {d}{dx}}\coth x=1-\coth ^{2}x=-{\hbox{csch}}^{2}x=-1/\sinh ^{2}x\,} d d x csch x = − coth ⁡ x csch x {\displaystyle {\frac {d}{dx}}\ {\hbox{csch}}\,x=-\coth x\ {\hbox{csch}}\,x\,} d d x sech x = − tanh ⁡ x sech x {\displaystyle {\frac {d}{dx}}\ {\hbox{sech}}\,x=-\tanh x\ {\hbox{sech}}\,x\,} d d x arsinh x = 1 x 2 + 1 {\displaystyle {\frac {d}{dx}}\,\operatorname {arsinh} \,x={\frac {1}{\sqrt {x^{2}+1}}}} d d x arcosh x = 1 x 2 − 1 {\displaystyle {\frac {d}{dx}}\,\operatorname {arcosh} \,x={\frac {1}{\sqrt {x^{2}-1}}}} d d x artanh x = 1 1 − x 2 {\displaystyle {\frac {d}{dx}}\,\operatorname {artanh} \,x={\frac {1}{1-x^{2}}}} d d x arcsch x = − 1 | x | 1 + x 2 {\displaystyle {\frac {d}{dx}}\,\operatorname {arcsch} \,x=-{\frac {1}{\left|x\right|{\sqrt {1+x^{2}}}}}} d d x arsech x = − 1 x 1 − x 2 {\displaystyle {\frac {d}{dx}}\,\operatorname {arsech} \,x=-{\frac {1}{x{\sqrt {1-x^{2}}}}}} d d x arcoth x = 1 1 − x 2 {\displaystyle {\frac {d}{dx}}\,\operatorname {arcoth} \,x={\frac {1}{1-x^{2}}}} == Hiperbolik funksiyaların inteqralları == ∫ sinh ⁡ a x d x = a − 1 cosh ⁡ a x + C {\displaystyle \int \sinh ax\,dx=a^{-1}\cosh ax+C} ∫ cosh ⁡ a x d x = a − 1 sinh ⁡ a x + C {\displaystyle \int \cosh ax\,dx=a^{-1}\sinh ax+C} ∫ tanh ⁡ a x d x = a − 1 ln ⁡ ( cosh ⁡ a x ) + C {\displaystyle \int \tanh ax\,dx=a^{-1}\ln(\cosh ax)+C} ∫ coth ⁡ a x d x = a − 1 ln ⁡ ( sinh ⁡ a x ) + C {\displaystyle \int \coth ax\,dx=a^{-1}\ln(\sinh ax)+C} ∫ d u a 2 + u 2 = sinh − 1 ⁡ ( u a ) + C {\displaystyle \int {\frac {du}{\sqrt {a^{2}+u^{2}}}}=\sinh ^{-1}\left({\frac {u}{a}}\right)+C} ∫ d u u 2 − a 2 = cosh − 1 ⁡ ( u a ) + C {\displaystyle \int {\frac {du}{\sqrt {u^{2}-a^{2}}}}=\cosh ^{-1}\left({\frac {u}{a}}\right)+C} ∫ d u a 2 − u 2 = a − 1 tanh − 1 ⁡ ( u a ) + C ; u 2 < a 2 {\displaystyle \int {\frac {du}{a^{2}-u^{2}}}=a^{-1}\tanh ^{-1}\left({\frac {u}{a}}\right)+C;u^{2}<a^{2}} ∫ d u a 2 − u 2 = a − 1 coth − 1 ⁡ ( u a ) + C ; u 2 > a 2 {\displaystyle \int {\frac {du}{a^{2}-u^{2}}}=a^{-1}\coth ^{-1}\left({\frac {u}{a}}\right)+C;u^{2}>a^{2}} ∫ d u u a 2 − u 2 = − a − 1 sech − 1 ⁡ ( u a ) + C {\displaystyle \int {\frac {du}{u{\sqrt {a^{2}-u^{2}}}}}=-a^{-1}\operatorname {sech} ^{-1}\left({\frac {u}{a}}\right)+C} ∫ d u u a 2 + u 2 = − a − 1 csch − 1 ⁡ | u a | + C {\displaystyle \int {\frac {du}{u{\sqrt {a^{2}+u^{2}}}}}=-a^{-1}\operatorname {csch} ^{-1}\left|{\frac {u}{a}}\right|+C} C sabit ədəddir. == Loqarifmaaltı tərs hiperbolik funksiyalar == arsinh x = ln ⁡ ( x + x 2 + 1 ) {\displaystyle \operatorname {arsinh} \,x=\ln \left(x+{\sqrt {x^{2}+1}}\right)} arcosh x = ln ⁡ ( x + x 2 − 1 ) ; x ≥ 1 {\displaystyle \operatorname {arcosh} \,x=\ln \left(x+{\sqrt {x^{2}-1}}\right);x\geq 1} artanh x = 1 2 ln ⁡ 1 + x 1 − x ; | x | < 1 {\displaystyle \operatorname {artanh} \,x={\tfrac {1}{2}}\ln {\frac {1+x}{1-x}};\left|x\right|<1} arcoth x = 1 2 ln ⁡ x + 1 x − 1 ; | x | > 1 {\displaystyle \operatorname {arcoth} \,x={\tfrac {1}{2}}\ln {\frac {x+1}{x-1}};\left|x\right|>1} arsech x = ln ⁡ 1 + 1 − x 2 x ; 0 < x ≤ 1 {\displaystyle \operatorname {arsech} \,x=\ln {\frac {1+{\sqrt {1-x^{2}}}}{x}};0<x\leq 1} arcsch x = ln ⁡ ( 1 x + 1 + x 2 | x | ) {\displaystyle \operatorname {arcsch} \,x=\ln \left({\frac {1}{x}}+{\frac {\sqrt {1+x^{2}}}{\left|x\right|}}\right)} == Teylor ardıcıllığı üçün hiperbolik funksiyalar == sinh ⁡ x = x + x 3 3 ! + x 5 5 ! + x 7 7 ! + ⋯ = ∑ n = 0 ∞ x 2 n + 1 ( 2 n + 1 ) ! {\displaystyle \sinh x=x+{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+{\frac {x^{7}}{7!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{(2n+1)!}}} cosh ⁡ x = 1 + x 2 2 ! + x 4 4 ! + x 6 6 ! + ⋯ = ∑ n = 0 ∞ x 2 n ( 2 n ) !
Hipergolik yanacaq
Hipergolik yanacaq, hipergolik impuls, hipergolik reaksiya və ya hipergolik propellant, ətrafdakı temperatur və təzyiq kimi fiziki dəyərlərdən asılı olmayaraq başqa bir kimyəvi birləşmə ilə birləşdirildikdə qəfildən parlaya və alovlanma qabiliyyətinə malik yüksək reaktiv və yanıcı birləşmələrə verilən ümumi addır. Hipergolik yanacaq, xüsusilə atmosfer xaricindəki tətbiqlərdə raketlərin hipergolik mühərriklərlə oksigendən müstəqil şəkildə yanmasını təmin edir. Burada istifadə olunan impulslardan biri yanacaq, digəri isə yüksəldici və ya oksidləşdirici adlanır. Ümumiyyətlə, müasir kosmik tətbiqlərdə ən çox istifadə olunan hipergolik yanacaqlar asimmetrik dimetil hidrazin və diazot tetraoksid birləşməsindən ibarətdir. == Tarixi == Sovet tədqiqatçısı Valentin Qluşko 1931-ci ildə hipergolik yanacaqla raket mühərrikini sınaqdan keçirdi. Əvvəlcə mühərriklərin "kimyəvi alovlanması" üçün karbon disulfidində həll olunan fosforun kerosin / azot turşusunun mühərriklərə yüklənməsinidə istifadə edilmişdir. 1935-ci ildən başlayaraq, Alman Aeronavtika İnstitutunun professoru O. Lutz 1000-dən çox öz-özünə atəş açan eksperimentlər aparmışdır. O, Walter şirkətinə konsentrat hidrogen peroksid ilə alovlanan C-Stoffun inkişafında kömək etdi. BMW müxtəlif aminlər, ksilidinlər və anilinlərin birləşməsi ilə hipergolik turşu qarışığı yandıran mühərriklər hazırladı. Hiperqolik propellanlar, 1940-cı ildə ABŞ-da GALCIT və Navy Annapolis tədqiqatçıları tərəfindən müstəqil olaraq üçüncü dəfə kəşf edildi.
Hipersonik
Hipersonik 5 Mach və ya daha yüksək sürətlər üçün istifadə olunur. (1 Mach 15 dərəcə Selsi ilə yerə yaxın yerlərdə təxminən 1225 km/saatdır.) Ayrıca, 5 Mach və daha yüksək sürətlə uçmaq üçün hazırlanan təyyarələrə hipersonik təyyarələr deyilir. Bunlara misal olaraq North American Aviation aviasiya şirkəti tərəfindən istehsal olunan North American X-15 və NASA tərəfindən hazırlanan NASA X-43-ü göstərmək olar. İndiyə qədər qurulmuş bütün vasitələr eksperimentaldır.
Hiperbola
Hiperbola (yun. ύπερβολή — yuxarıdan, ύπερ — atmaq) — tərs mütənasibliyin qrafikinə verilən addır. Tərs mütənasiblik düsturuy = k ÷ x == Asimptotlar == Hiperbolanın asimptotları: x 2 a 2 − y 2 b 2 = 1 {\displaystyle {\frac {x^{2}}{a^{2}}}-{\frac {y^{2}}{b^{2}}}=1} Hiperbola 2 asimptotdan ibarətdir: x a ± y b = 0 {\displaystyle {\frac {x}{a}}\pm {\frac {y}{b}}=0} == Xarakteristikası == Hiperbola Parabolanın tərsidir. Hiperbola iki budaqdan ibarətdir. k > 0 olduqda hiperbolanın budaqları I və III rüblərdə, k < 0 olduqda isə hiperbolanın budaqları II və IV rüblərdə yerləşir. Hiperbolanın xarakteristikasına aşğıdakı ifadələr aiddir: c 2 = a 2 + b 2 {\displaystyle c^{2}=a^{2}+b^{2}\,} . ε = c / a {\displaystyle \varepsilon =c/a\,} . b 2 = a 2 ( ε 2 − 1 ) {\displaystyle b^{2}=a^{2}\left(\varepsilon ^{2}-1\right)\,} . r p = a ( ε − 1 ) {\displaystyle r_{p}=a\left(\varepsilon -1\right)\,} . a = p ε 2 − 1 {\displaystyle a={\frac {p}{\varepsilon ^{2}-1}}\,} .
Hipertonik kriz
Hipertonik kriz — arterial təzyiqin başlanğıc səviyyədən (normal və ya yüksəlmiş) qəflətən yüksək həddə yüksəlməsidir. Hipertonik kriz zamanı beyin, ürək, böyrək qan dövranı kəskin pisləşir və ciddi ağırlaçmalar meydana çıxır (insult, infarkt, aorta divarının laylanması, ağciyər ödəmi, kəskin böyrək çatmamazlığı). Hipertonik krizlər bir neçə prinsiplər üzrə təsnif edilir. AT-nin yüksəlmə mexanizmlərinə əsasən hipertonik krizlər hiperkinetik, hipokinetik və eukinetik tiplərə bölünür. Hiperkinetik krizlər periferik damarların normal və ya zəifləmiş tonusu, ürək atımının yüksəlməsi ilə xarakterizə olunur – belə hallarda sistolik təzyiq artır. Hipokinetik krizin inkişaf mexanizmi ürək atımının azalması, periferik damarların müqavimətinin kəskin artması ilə bağlıdır, bu da əsasən diastolik təzyiqin yüksəlməsinə gətirib çıxarır. Eukinetik hipertonik krizlər normal ürək atımı və periferik damarların yüksək tonusu ilə səciyyələnir, nəticədə həm sistolik, həm də diastolik təzyiq yüksəlir. Klinik əlamətlərinə görə hipertonik krizin 2 qrupa ayrılması qəbul olunmuşdur: ağırlaşmamış hipertonik kriz (I tip); ağırlaşmış hipertonik kriz (II tip). == Hipertonik kriz səbəbləri == Kriz hipertoniya xəstəliyinin istənilən mərhələsində baş verə bilər. Əsas səbəblərə aiddir: yüksək psixoemosional gərginlik; hipertoniya xəstəliyinin qeyri-adekvat müalicəsi; antihipertenziv preparatların qəbulunun dayandırılması; xörək duzunun izafi qəbulu; alkoqoldan çox miqdarda istifadə; bəzi ikincili hipertenziyalar və s.
Hiperbola (riyaziyyat)
Hiperbola (yun. ύπερβολή — yuxarıdan, ύπερ — atmaq) — tərs mütənasibliyin qrafikinə verilən addır. Tərs mütənasiblik düsturuy = k ÷ x == Asimptotlar == Hiperbolanın asimptotları: x 2 a 2 − y 2 b 2 = 1 {\displaystyle {\frac {x^{2}}{a^{2}}}-{\frac {y^{2}}{b^{2}}}=1} Hiperbola 2 asimptotdan ibarətdir: x a ± y b = 0 {\displaystyle {\frac {x}{a}}\pm {\frac {y}{b}}=0} == Xarakteristikası == Hiperbola Parabolanın tərsidir. Hiperbola iki budaqdan ibarətdir. k > 0 olduqda hiperbolanın budaqları I və III rüblərdə, k < 0 olduqda isə hiperbolanın budaqları II və IV rüblərdə yerləşir. Hiperbolanın xarakteristikasına aşğıdakı ifadələr aiddir: c 2 = a 2 + b 2 {\displaystyle c^{2}=a^{2}+b^{2}\,} . ε = c / a {\displaystyle \varepsilon =c/a\,} . b 2 = a 2 ( ε 2 − 1 ) {\displaystyle b^{2}=a^{2}\left(\varepsilon ^{2}-1\right)\,} . r p = a ( ε − 1 ) {\displaystyle r_{p}=a\left(\varepsilon -1\right)\,} . a = p ε 2 − 1 {\displaystyle a={\frac {p}{\varepsilon ^{2}-1}}\,} .