triqonometrik

triqonometrik
triqonal
triqonometriya
OBASTAN VİKİ
Triqonometrik funksiya
Triqonometrik funksiyalar — elementar funksiyaların bir növüdür. Onlara sinus (sin x), kosinus (cos x), tangens (tan x), kotangens (cot x), sekans (sec x) və kosekans (cosec x) funksiyalarını aid edirlər. Triqonometrik funksiyalar adətən həndəsi yolla təyin olunur, lakin onları analitik və bəzi differensial tənliklərin həlli şəklində də təyin etmək mümkündür. Belə hallarda triqonometrik funksiyaların təyin oblastı kompleks ədədləri də əhatə edir. Triqonometrik funksiyaları adətən həndəsi yolla təyin edirlər. Fərz edək ki, müstəvidə dekart koordinat sistemində, mərkəzi koordinat başlanğıcı O nöqtəsində olmaqla R radiuslu çevrə var. Bucaqları absis oxunun müsbət istiqamətdə OB şüasına qədər dönməsi kimi qəbul edirik. Saat əqrəbinin hərəkəti istiqaməti mənfi, əks istiqamət isə müsbət hesab edilir. B nöqtəsinin koordinatlaını dekart koordinat sistemində (xB, yB) kimi qeyd edək.
Triqonometrik funksiyalar
Triqonometrik funksiyalar — elementar funksiyaların bir növüdür. Onlara sinus (sin x), kosinus (cos x), tangens (tan x), kotangens (cot x), sekans (sec x) və kosekans (cosec x) funksiyalarını aid edirlər. Triqonometrik funksiyalar adətən həndəsi yolla təyin olunur, lakin onları analitik və bəzi differensial tənliklərin həlli şəklində də təyin etmək mümkündür. Belə hallarda triqonometrik funksiyaların təyin oblastı kompleks ədədləri də əhatə edir. Triqonometrik funksiyaları adətən həndəsi yolla təyin edirlər. Fərz edək ki, müstəvidə dekart koordinat sistemində, mərkəzi koordinat başlanğıcı O nöqtəsində olmaqla R radiuslu çevrə var. Bucaqları absis oxunun müsbət istiqamətdə OB şüasına qədər dönməsi kimi qəbul edirik. Saat əqrəbinin hərəkəti istiqaməti mənfi, əks istiqamət isə müsbət hesab edilir. B nöqtəsinin koordinatlaını dekart koordinat sistemində (xB, yB) kimi qeyd edək.
Triqonometrik tangens funksiyası
Tərs triqonometrik funksiyalar
Tərs triqonometrik funksiyalar (dairəvi funksiya, arkfunksiya) — triqonometrik funksiyalar tərsinə çevrilə bilən riyazi funksiyalardır. Tərs triqonometrik funksiyalara əsasən altı funksiya daxildir: arksinus ( a r c s i n x {\displaystyle \mathrm {arcsin} \,x} — bu bucağın sinusu x {\displaystyle x} -ə bərabərdir) arkkosinus ( a r c c o s x {\displaystyle \mathrm {arccos} \,x} — bu bucağın kosinusu x {\displaystyle x} -ə bərabərdir) arktangens ( a r c t a n x {\displaystyle \mathrm {arctan} \,x} , bəzi ədəbiyyatlarda a r c t g x {\displaystyle \mathrm {arctg} \,x} ) arkkotangens ( a r c c o t x {\displaystyle \mathrm {arccot} \,x} və ya a r c c o t a n x {\displaystyle \mathrm {arccotan} \,x} , bəzi ədəbiyyatlarda a r c c t g x {\displaystyle \mathrm {arcctg} \,x} ) arksekans ( a r c s e c x {\displaystyle \mathrm {arcsec} \,x} ) arkkosekans ( a r c c s c x {\displaystyle \mathrm {arccsc} \,x} , bəzi ədəbiyyatlarda a r c c o s e c x {\displaystyle \mathrm {arccosec} \,x} ) Triqonometrik funksiyaların adının qarışındakı "arc" sözü ( lat. arcus — ox, qövs, qövsəoxşar xətt) bu funksiyaları tərs triqonometrik funksiyaların adına çevirir. Bu onunla bağlıdır ki, tərs triqonometrik funksiyaların həndəsi qiyməti vahid çevrənin qövsünün uzunluğu ilə əlaqələndirmək olar. Tərs triqonometrik funksiyalar anlayışını Laqranj köməyi ilə Avstriya riyaziyyatçısı Karla Şerfer (alm. Karl Scherffer‎; 1716—1783) daxil etmişdir. arcsin ⁡ x + arccos ⁡ x = π 2 {\displaystyle \arcsin x+\arccos x={\frac {\pi }{2}}} arctan x + arccot x = π 2 {\displaystyle \operatorname {arctan} \,x+\operatorname {arccot} \,x={\frac {\pi }{2}}} Arksinus - m ədədinin x bucağının qiymətinə , radian ifadəsinə deyilir, hansı ki, sin ⁡ x = m , − π 2 ⩽ x ⩽ π 2 , | m | ⩽ 1. {\displaystyle \sin x=m,\,-{\frac {\pi }{2}}\leqslant x\leqslant {\frac {\pi }{2}},\,|m|\leqslant 1.} y = sin ⁡ x {\displaystyle y=\sin x} funksiyası bütün ədəd oxunda kəsilməz və məhduddur. y = arcsin ⁡ x {\displaystyle y=\arcsin x} funksiyası ciddi artandır. sin ⁡ ( arcsin ⁡ x ) = x {\displaystyle \sin(\arcsin x)=x\qquad } − 1 ⩽ x ⩽ 1 , {\displaystyle -1\leqslant x\leqslant 1,} arcsin ⁡ ( sin ⁡ y ) = y {\displaystyle \arcsin(\sin y)=y\qquad } − π 2 ⩽ y ⩽ π 2 , {\displaystyle -{\frac {\pi }{2}}\leqslant y\leqslant {\frac {\pi }{2}},} D ( arcsin ⁡ x ) = [ − 1 ; 1 ] {\displaystyle D(\arcsin x)=[-1;1]\qquad } (təyin oblastı), E ( arcsin ⁡ x ) = [ − π 2 ; π 2 ] {\displaystyle E(\arcsin x)=\left[-{\frac {\pi }{2}};{\frac {\pi }{2}}\right]\qquad } (qiymətlər çoxluğu).
Triqonometrik funksiyaların inteqralları siyahısı
Triqonometrik funksiyaların inteqralları siyahısı — bütün Triqonometrik funksiyaların inteqralları haqqında olan düsturları cəmləşdirir. Düsturlardan qeyd etmək lazımdır ki, C (yəni, konstant) heç vaxt sıfra bərabər deyildir. ∫ sin ⁡ ( a x + b ) d x = − 1 a cos ⁡ ( a x + b ) + C {\displaystyle \int \sin(ax+b)\,dx=-{\frac {1}{a}}\cos(ax+b)+C} ∫ cos ⁡ ( a x + b ) d x = 1 a sin ⁡ ( a x + b ) + C {\displaystyle \int \cos(ax+b)\,dx={\frac {1}{a}}\sin(ax+b)+C} ∫ tan ⁡ ( a x ) d x = − 1 a ln ⁡ | cos ⁡ ( a x ) | + C = 1 a ln ⁡ | sec ⁡ ( a x ) | + C {\displaystyle \int \tan(ax)\,dx=-{\frac {1}{a}}\ln |\cos(ax)|+C={\frac {1}{a}}\ln |\sec(ax)|+C} ∫ cotan ⁡ ( a x ) d x = 1 a ln ⁡ | sin ⁡ ( a x ) | + C {\displaystyle \int \operatorname {cotan} (ax)\,dx={\frac {1}{a}}\ln |\sin(ax)|+C} ∫ sin ⁡ ( x ) d x = − cos ⁡ ( x ) + C {\displaystyle \int \sin(x)\,dx=-\cos(x)+C} ∫ cos ⁡ ( x ) d x = sin ⁡ ( x ) + C {\displaystyle \int \cos(x)\,dx=\sin(x)+C} ∫ tan ⁡ ( x ) d x = − ln ⁡ | cos ⁡ ( x ) | + C = ln ⁡ | sec ⁡ ( x ) | + C {\displaystyle \int \tan(x)\,dx=-\ln |\cos(x)|+C=\ln |\sec(x)|+C} ∫ cotan ⁡ ( x ) d x = ln ⁡ | sin ⁡ ( x ) | + C = − ln ⁡ | cosec ⁡ ( x ) | + C {\displaystyle \int \operatorname {cotan} (x)\,dx=\ln |\sin(x)|+C=-\ln |\operatorname {cosec} (x)|+C} ∫ sin ⁡ c x d x = − 1 c cos ⁡ c x {\displaystyle \int \sin cx\;dx=-{\frac {1}{c}}\cos cx\,\!} ∫ sin n ⁡ c x d x = − sin n − 1 ⁡ c x cos ⁡ c x n c + n − 1 n ∫ sin n − 2 ⁡ c x d x ( n > 0 ) {\displaystyle \int \sin ^{n}cx\;dx=-{\frac {\sin ^{n-1}cx\cos cx}{nc}}+{\frac {n-1}{n}}\int \sin ^{n-2}cx\;dx\qquad {\mbox{( }}n>0{\mbox{)}}\,\!} ∫ x sin ⁡ c x d x = sin ⁡ c x c 2 − x cos ⁡ c x c {\displaystyle \int x\sin cx\;dx={\frac {\sin cx}{c^{2}}}-{\frac {x\cos cx}{c}}\,\!} ∫ x 2 sin ⁡ c x d x = 2 cos ⁡ c x c 3 + 2 x sin ⁡ c x c 2 − x 2 cos ⁡ c x c {\displaystyle \int x^{2}\sin cx\;dx={\frac {2\cos cx}{c^{3}}}+{\frac {2x\sin cx}{c^{2}}}-{\frac {x^{2}\cos cx}{c}}\,\!} ∫ x 3 sin ⁡ c x d x = − 6 sin ⁡ c x c 4 + 6 x cos ⁡ c x c 3 + 3 x 2 sin ⁡ c x c 2 − x 3 cos ⁡ c x c {\displaystyle \int x^{3}\sin cx\;dx=-{\frac {6\sin cx}{c^{4}}}+{\frac {6x\cos cx}{c^{3}}}+{\frac {3x^{2}\sin cx}{c^{2}}}-{\frac {x^{3}\cos cx}{c}}\,\!} ∫ x 4 sin ⁡ c x d x = − 24 cos ⁡ c x c 5 − 24 x sin ⁡ c x c 4 + 12 x 2 cos ⁡ c x c 3 + 4 x 3 sin ⁡ c x c 2 − x 4 cos ⁡ c x c {\displaystyle \int x^{4}\sin cx\;dx=-{\frac {24\cos cx}{c^{5}}}-{\frac {24x\sin cx}{c^{4}}}+{\frac {12x^{2}\cos cx}{c^{3}}}+{\frac {4x^{3}\sin cx}{c^{2}}}-{\frac {x^{4}\cos cx}{c}}\,\!} ∫ x 5 sin ⁡ c x d x = 120 sin ⁡ c x c 6 − 120 x cos ⁡ c x c 5 − 60 x 2 sin ⁡ c x c 4 + 20 x 3 cos ⁡ c x c 3 + 5 x 4 sin ⁡ c x c 2 − x 5 cos ⁡ c x c {\displaystyle \int x^{5}\sin cx\;dx={\frac {120\sin cx}{c^{6}}}-{\frac {120x\cos cx}{c^{5}}}-{\frac {60x^{2}\sin cx}{c^{4}}}+{\frac {20x^{3}\cos cx}{c^{3}}}+{\frac {5x^{4}\sin cx}{c^{2}}}-{\frac {x^{5}\cos cx}{c}}\,\!} ∫ x n sin ⁡ c x d x = n ! ⋅ sin ⁡ c x [ x n − 1 c 2 ⋅ ( n − 1 ) ! − x n − 3 c 4 ⋅ ( n − 3 ) ! + x n − 5 c 6 ⋅ ( n − 5 ) ! − . . . ] − − n !

Значение слова в других словарях