Поиск по словарям.

Результаты поиска

OBASTAN VİKİ
Triqonometriya
Triqonometriya (yunanca τρίγωνο trígono „üçbucaq" və μέτρον métron „ölçü") - həndəsənin və bununla riyaziyyatın bir hissəsi olub üçbucaqların tərəflərinin uzunluğu və bucaqları arasındakı münasibətləri öyrədir. Əgər məsələlərin həlli müstəvidə baxılarsa onda bu müstəvi triqonometriyası adlanır, fəzada baş verənlərlə sferik triqonometriya və hiberbolik triqonometriya məşğul olur. Triqonometriyanın əsas vəzifəsi üçbucağın verilmiş üç parametri (yan tərəfi, bucağı, meridian və s.) əsasında yerdə qalanlarını təyin etməkdən ibarətdir. Köməkçi vasitə kimi triqonometrik funksiyalardan sin, cos, tan, cot, sec və csc tətbiq edilir. triqonometrik hesabatlar həmçinin daha mürəkkəb həndəsi fiqurlara (poliqonlar, stereometriyadakı fiqurlar) da tətbiq edilə bilər. == Düzbucaqlı üçbucaqda triqonometriya == Triqonometrik məsələlərin həlli düzbucaqlı üçbucaqda nisbətən sadədir. Üçbucağın bucaqlarının cəmi 180° olduğundan düzbucaqlı üçbucaqlarda düzbucaq ən böyük bucaqdır. Onun qarşısında ən böyük tərəf – hipotenuz durur. Yerdə qalan iki qısa tərəf katetlərdir. Düzbucaqlı üçbucaq üçün bəllidir: Verilmiş bucağın Sinusu = Qarşı katet/Hipotenuz Verilmiş bucağın Kosinusu = Qonşu katet/Hipotenuz Verilmiş bucağın Tangensi = Qarşı katet/Qonşu katet Verilmiş bucağın Kotangensi = Qonşu katet/Qarşı katet Verilmiş bucağın Sekansı = Hipotenuz/Qonşu katet Verilmiş bucağın Kosekansı = Hipotenuz/Qarşı katetBuradan güründüyü kimi, üçbucağın yalnız bucaqlarının qiymətləri verilərsə onda onun tərəflərini tapmaq çətinlik yaradır.
Kosekans (triqonometriya)
Kosekans — hipotenuzun qarşı katetə olan nisbətinə deyilir.
Kosinus (triqonometriya)
Koordinat başlanğıcından verilmiş bucaq istiqamətində buraxılmış şüanın, mərkəzi koordinat başlanğıcında yerləşmiş vahid çevrəni kəsdiyi nöqtənin absisinə həmin bucağın Kosinusu deyilir.
Kotangens (triqonometriya)
Kotangens — qonşu katetin qarşı katetə olan nisbətinə deyilir.
Sekans (triqonometriya)
Sekans — hipotenuzun qonşu katetə olan nisbətinə deyilir. İfadəsi: sec ⁡ x = 1 cos ⁡ x = | D O | | C O | {\displaystyle \sec x={\frac {1}{\cos x}}={\frac {|DO|}{|CO|}}} == İnteqralı == sec (x) funksiyasının inteqralı bu funksiyanın, (sec (x) + tan (x)) ifadəsinə vurulur. ∫ sec ⁡ x d x = ∫ sec ⁡ x ⋅ sec ⁡ x + tan ⁡ x sec ⁡ x + tan ⁡ x d x {\displaystyle \int \sec ~x~dx={\int \sec ~x\cdot {\sec ~x+\tan ~x \over \sec ~x+\tan ~x}~dx}} u = sec x + tan x ve du = ∫(sec x ∙ tan x + sec2x) dx periodu edilir.
Sinus (triqonometriya)
Koordinat başlanğıcından verilmiş bucaq istiqamətində buraxılmış şüanın, mərkəzi koordinat başlanğıcında yerləşmiş vahid çevrəni kəsdiyi nöqtənin kordinatına həmin bucağın Sinusu deyilir.
Tangens (triqonometriya)
Tangens - qarşı katetin qonşu katetə olan nisbətinə deyilir.
Triqonometriyanın tarixi
Triqonometriyanın tarixi — çox uzun mərhələli olan və həndəsədə istifadə edilən triqonometriyanın tarixindən bəhs edilir. Triqonometriyanın tarixi 3000 ilə yaxındır. Vətəni Misir və Hindistan hesab olunur. Üçbucaqların tərəfləri və bucaqları arasında əlaqənin ilk dəfə Misir astronomları Hipparx və Ptolomey tərəfindən tapıldığı hesab edilir. Triqonometriya sözünə ilk dəfə alman riyaziyyatçısı Pitiskusun kitabında 1505-ci ildə rast gəlinib. Riyaziyyatın birbaşa astronomiyadan çıxmış bir qolu olan triqonometriyanın bəzi qaydaları Babillilər və Misirlilər dövründə bilinirdi. Qərbdə Nəsirəddin Tusidən böyük ölçüdə faydalanan Alman alimi Reqiomontan "Üçbucaqların bütün növləri haqqında" adlı əsəriylə gərçək triqonometriya doğulmuş oldu. Fransua Viyet və Simon Stevin, hesablarda onluq ədədlərdən faydalandılar. Con Neper triqonometriyadan faydalanaraq loqarifma anlayışını elmə gətirdi. İsaak Nyuton və şagirdləri triqonometriya həm funksiyalarının, həm də loqarifmlərinin hesabına tam silsilələri tətbiq etdilər.
Triqonometriyanın əsas düsturları
Triqonometriyanın əsas düsturları - triqonometrik .
Triqonometriyanın əsas formulları
Triqonometriyanın əsas düsturları - triqonometrik .
Triqonometrik funksiya
Triqonometrik funksiyalar — elementar funksiyalarin bir növüdür. Onlara sinus (sin x), kosinus (cos x), tangens (tg x), kotangens (ctg x), sekans (sec x) və kosekans (cosec x) funksiyalarını aid edirlər. Triqonometrik funksiyalar adətən həndəsi yolla təyin olunur, lakin onları analitik və bəzi differensial tənliklərin həlli şəklində də təyin etmək mümkündür. Belə hallarda triqonometrik funksiyaların təyin oblastı kompleks ədədləri də əhatə edir. == Triqonometrik funksiyaların təyin olunma yolları == Triqonometrik funksiyaları adətən həndəsi yolla təyin edirlər. Fərz edək ki, müstəvidə dekart koordinat sistemində, mərkəzi koordinat başlanğıcı O nöqtəsində olmaqla R radiuslu çevrə var. Bucaqları absis oxunun müsbət istiqamətdə OB şüasına qədər dönməsi kimi qəbul edirik. Saat əqrəbinin hərəkəti istiqaməti mənfi, əks istiqamət isə müsbət hesab edilir. B nöqtəsinin koordinatlaını dekart koordinat sistemində (xB, yB) kimi qeyd edək.
Triqonometrik funksiyalar
Triqonometrik funksiyalar — elementar funksiyalarin bir növüdür. Onlara sinus (sin x), kosinus (cos x), tangens (tg x), kotangens (ctg x), sekans (sec x) və kosekans (cosec x) funksiyalarını aid edirlər. Triqonometrik funksiyalar adətən həndəsi yolla təyin olunur, lakin onları analitik və bəzi differensial tənliklərin həlli şəklində də təyin etmək mümkündür. Belə hallarda triqonometrik funksiyaların təyin oblastı kompleks ədədləri də əhatə edir. == Triqonometrik funksiyaların təyin olunma yolları == Triqonometrik funksiyaları adətən həndəsi yolla təyin edirlər. Fərz edək ki, müstəvidə dekart koordinat sistemində, mərkəzi koordinat başlanğıcı O nöqtəsində olmaqla R radiuslu çevrə var. Bucaqları absis oxunun müsbət istiqamətdə OB şüasına qədər dönməsi kimi qəbul edirik. Saat əqrəbinin hərəkəti istiqaməti mənfi, əks istiqamət isə müsbət hesab edilir. B nöqtəsinin koordinatlaını dekart koordinat sistemində (xB, yB) kimi qeyd edək.
Triqonometrik tangens funksiyası
triqonometrik tangens funksiyası - tan. Əgər A düzbucaqlı üçbucağın bucağıdırsa, onda A bucağının tangensi (tan A, yaxud tg A kimi yazılır) aşağıdakı kimi təyin olunur: tan A = (qarşıdakı tərəfin uzunluğu)/(bitişik tərəfin uzunluğu) Bir çox proqramlaşdırma dilində tan(A) funksiyası tan A qiymətini (A radianla verilir) hesablayır. == Ədəbiyyat == İsmayıl Calallı (Sadıqov), “İnformatika terminlərinin izahlı lüğəti”, 2017, “Bakı” nəşriyyatı, 996 s.
Tərs triqonometrik funksiyalar
Tərs triqonometrik funksiyalar (dairəvi funksiya, arkfunksiya) — triqonometrik funksiyalar tərsinə çevrilə bilən riyazi funksiyalardır. Tərs triqonometrik funksiyalara əsasən altı funksiya daxildir: arksinus ( a r c s i n x ; a r c s i n x {\displaystyle \mathrm {arcsin} \,x;\mathrm {arcsin} \,x} — bu bucağın sinusu x {\displaystyle x} -ə bərabərdir) arkkosinus ( a r c c o s x ; a r c c o s x {\displaystyle \mathrm {arccos} \,x;\mathrm {arccos} \,x} — bu bucağın kosinusu x {\displaystyle x} -ə bərabərdir) arktangens ( a r c t g x {\displaystyle \mathrm {arctg} \,x} ; xarici ədəbiyyatlarda a r c t a n x {\displaystyle \mathrm {arctan} \,x} ) arkkotangens ( a r c c t g x {\displaystyle \mathrm {arcctg} \,x} ; xarici ədəbiyyatlarda a r c c o t x {\displaystyle \mathrm {arccot} \,x} və ya a r c c o t a n x {\displaystyle \mathrm {arccotan} \,x} ) arksekans( a r c s e c x {\displaystyle \mathrm {arcsec} \,x} ) arkkosekans( a r c c o s e c x {\displaystyle \mathrm {arccosec} \,x} ; xarici ədəbiyyatlarda a r c c s c x {\displaystyle \mathrm {arccsc} \,x} )Triqonometrik funksiyaların adının qarışındakı "arc" sözü( lat. arcus — ox, qövs, qövsəoxşar xətt) bu funksiyaları tərs triqonometrik funksiyaların adına çevirir. Bu onunla bağlıdır ki, tərs triqonometrik funksiyaların həndəsi qiyməti vahid çevrənin qövsünün uzunluğu ilə əlaqələndirmək olar. Tərs triqonometrik funksiyalar anlayışını Laqranj köməyi ilə Avstriya riyaziyyatçısı Karla Şerfer (alm. Karl Scherffer‎; 1716—1783) daxil etmişdir. == Əsas eyniliklər == arcsin ⁡ x + arccos ⁡ x = π 2 {\displaystyle \arcsin x+\arccos x={\frac {\pi }{2}}} arctg x + arcctg x = π 2 {\displaystyle \operatorname {arctg} \,x+\operatorname {arcctg} \,x={\frac {\pi }{2}}} == Arksinus funksiyası == Arksinus - m ədədinin x bucağının qiymətinə , radian ifadəsinə deyilir, hansı ki, sin ⁡ x = m , − π 2 ⩽ x ⩽ π 2 , | m | ⩽ 1. {\displaystyle \sin x=m,\,-{\frac {\pi }{2}}\leqslant x\leqslant {\frac {\pi }{2}},\,|m|\leqslant 1.} y = sin ⁡ x {\displaystyle y=\sin x} funksiyası bütün ədəd oxunda kəsilməz və məhduddur. y = arcsin ⁡ x {\displaystyle y=\arcsin x} funksiyası ciddi artandır. sin ⁡ ( arcsin ⁡ x ) = x {\displaystyle \sin(\arcsin x)=x\qquad } − 1 ⩽ x ⩽ 1 , {\displaystyle -1\leqslant x\leqslant 1,} arcsin ⁡ ( sin ⁡ y ) = y {\displaystyle \arcsin(\sin y)=y\qquad } − π 2 ⩽ y ⩽ π 2 , {\displaystyle -{\frac {\pi }{2}}\leqslant y\leqslant {\frac {\pi }{2}},} D ( arcsin ⁡ x ) = [ − 1 ; 1 ] {\displaystyle D(\arcsin x)=[-1;1]\qquad } (təyin oblastı), E ( arcsin ⁡ x ) = [ − π 2 ; π 2 ] {\displaystyle E(\arcsin x)=\left[-{\frac {\pi }{2}};{\frac {\pi }{2}}\right]\qquad } (qiymətlər çoxluğu).
Triqonometrik funksiyaların inteqralları siyahısı
Triqonometrik funksiyaların inteqralları siyahısı — bütün Triqonometrik funksiyaların inteqralları haqqında olan düsturları cəmləşdirir. Düsturlardan qeyd etmək lazımdır ki, C (yəni, konstant) heç vaxt sıfra bərabər deyildir. == Əsas Triqonometrik funksiyaların inteqralları == ∫ sin ⁡ ( a x + b ) d x = − 1 a cos ⁡ ( a x + b ) + C {\displaystyle \int \sin(ax+b)\,dx=-{\frac {1}{a}}\cos(ax+b)+C} ∫ cos ⁡ ( a x + b ) d x = 1 a sin ⁡ ( a x + b ) + C {\displaystyle \int \cos(ax+b)\,dx={\frac {1}{a}}\sin(ax+b)+C} ∫ tan ⁡ ( a x ) d x = − 1 a ln ⁡ | cos ⁡ ( a x ) | + C = 1 a ln ⁡ | sec ⁡ ( a x ) | + C {\displaystyle \int \tan(ax)\,dx=-{\frac {1}{a}}\ln |\cos(ax)|+C={\frac {1}{a}}\ln |\sec(ax)|+C} ∫ cotan ⁡ ( a x ) d x = 1 a ln ⁡ | sin ⁡ ( a x ) | + C {\displaystyle \int \operatorname {cotan} (ax)\,dx={\frac {1}{a}}\ln |\sin(ax)|+C} ∫ sin ⁡ ( x ) d x = − cos ⁡ ( x ) + C {\displaystyle \int \sin(x)\,dx=-\cos(x)+C} ∫ cos ⁡ ( x ) d x = sin ⁡ ( x ) + C {\displaystyle \int \cos(x)\,dx=\sin(x)+C} ∫ tan ⁡ ( x ) d x = − ln ⁡ | cos ⁡ ( x ) | + C = ln ⁡ | sec ⁡ ( x ) | + C {\displaystyle \int \tan(x)\,dx=-\ln |\cos(x)|+C=\ln |\sec(x)|+C} ∫ cotan ⁡ ( x ) d x = ln ⁡ | sin ⁡ ( x ) | + C = − ln ⁡ | cosec ⁡ ( x ) | + C {\displaystyle \int \operatorname {cotan} (x)\,dx=\ln |\sin(x)|+C=-\ln |\operatorname {cosec} (x)|+C} == Sinus inteqralları == ∫ sin ⁡ c x d x = − 1 c cos ⁡ c x {\displaystyle \int \sin cx\;dx=-{\frac {1}{c}}\cos cx\,\!} ∫ sin n ⁡ c x d x = − sin n − 1 ⁡ c x cos ⁡ c x n c + n − 1 n ∫ sin n − 2 ⁡ c x d x ( n > 0 ) {\displaystyle \int \sin ^{n}cx\;dx=-{\frac {\sin ^{n-1}cx\cos cx}{nc}}+{\frac {n-1}{n}}\int \sin ^{n-2}cx\;dx\qquad {\mbox{( }}n>0{\mbox{)}}\,\!} ∫ x sin ⁡ c x d x = sin ⁡ c x c 2 − x cos ⁡ c x c {\displaystyle \int x\sin cx\;dx={\frac {\sin cx}{c^{2}}}-{\frac {x\cos cx}{c}}\,\!} ∫ x 2 sin ⁡ c x d x = 2 cos ⁡ c x c 3 + 2 x sin ⁡ c x c 2 − x 2 cos ⁡ c x c {\displaystyle \int x^{2}\sin cx\;dx={\frac {2\cos cx}{c^{3}}}+{\frac {2x\sin cx}{c^{2}}}-{\frac {x^{2}\cos cx}{c}}\,\!} ∫ x 3 sin ⁡ c x d x = − 6 sin ⁡ c x c 4 + 6 x cos ⁡ c x c 3 + 3 x 2 sin ⁡ c x c 2 − x 3 cos ⁡ c x c {\displaystyle \int x^{3}\sin cx\;dx=-{\frac {6\sin cx}{c^{4}}}+{\frac {6x\cos cx}{c^{3}}}+{\frac {3x^{2}\sin cx}{c^{2}}}-{\frac {x^{3}\cos cx}{c}}\,\!} ∫ x 4 sin ⁡ c x d x = − 24 cos ⁡ c x c 5 − 24 x sin ⁡ c x c 4 + 12 x 2 cos ⁡ c x c 3 + 4 x 3 sin ⁡ c x c 2 − x 4 cos ⁡ c x c {\displaystyle \int x^{4}\sin cx\;dx=-{\frac {24\cos cx}{c^{5}}}-{\frac {24x\sin cx}{c^{4}}}+{\frac {12x^{2}\cos cx}{c^{3}}}+{\frac {4x^{3}\sin cx}{c^{2}}}-{\frac {x^{4}\cos cx}{c}}\,\!} ∫ x 5 sin ⁡ c x d x = 120 sin ⁡ c x c 6 − 120 x cos ⁡ c x c 5 − 60 x 2 sin ⁡ c x c 4 + 20 x 3 cos ⁡ c x c 3 + 5 x 4 sin ⁡ c x c 2 − x 5 cos ⁡ c x c {\displaystyle \int x^{5}\sin cx\;dx={\frac {120\sin cx}{c^{6}}}-{\frac {120x\cos cx}{c^{5}}}-{\frac {60x^{2}\sin cx}{c^{4}}}+{\frac {20x^{3}\cos cx}{c^{3}}}+{\frac {5x^{4}\sin cx}{c^{2}}}-{\frac {x^{5}\cos cx}{c}}\,\!} ∫ x n sin ⁡ c x d x = n ! ⋅ sin ⁡ c x [ x n − 1 c 2 ⋅ ( n − 1 ) ! − x n − 3 c 4 ⋅ ( n − 3 ) ! + x n − 5 c 6 ⋅ ( n − 5 ) ! − . . . ] − − n !