Natural ədədlər — saymaq üçün istifadə olunan ədədlərə deyilir (riyazi dildə: 1-i özündə saxlayan minimal induktiv çoxluq).
Natural ədədlər tək (Məs.: 1, 3, 5) və cüt (Məs.: 2, 4, 6) olur. 0 Natural ədəd deyil.1,2,3,4,5,6,7,8,9 Natural ədədlərdir.
"Ədəd" sözü yunan sözü olan "artimos" sözündən götürülmüşdür. Hesabla ədədlər haqqındakı elmlə bağlı yaranmışdır. "Rəqəm" sözü (ərəbcə "sıfır") əsl mənası "boş yer" olan (həmin mənanı verən "sunya sanskrit" sözünün tərcüməsidir) ərəb sözündən götürülmüşdür. Əşyaları saymaq üçün və ya eyni növ əşyaların sıra nömrəsini göstərmək üçün istifadə olunan ədədlərə natural ədədlər deyilir. Natural sıra natural ədədlər çoxluğunu yaradır. Natural ədədlər çoxluğu N ilə işarə olnur. Çoxluq 1-dən başlayır və sonsuzdur. Sayma zamanı istifadə olunan ədədlər natural ədədlərdir. "0" natural ədəd deyil. Ən kiçik natural ədəd 1-dir. Natural ədədin yazılışında ədədin tutduğu yer mərtəbə adlanır. Rəqəmlərinin sayı müxtəlif olan iki natural ədəddən rəqəmi çox olan ədəd böyük, rəqəmi az olan kiçikdir. İki natural ədədin rəqəmlərinin sayı eynidirsə, onda ən yüksək mərtəbəsində çox sayda vahidi olan ədəd böyükdür. Həmin mərtəbədə vahidlərin sayı bərabərdirsə, onda bir pillə aşağı mərtəbənin vahidlərinin sayı müqayisə edilir.
abcd=1000a + 100b + 10c + d
abc=100a + 10b + c
ab=10a + b
Məsələn: abcd — ədədində
a — sayda minlik
b — sayda yüzlük
c — sayda onluq
d — sayda təklik var.
abcde — beşmərtəbəli ədədir.
Cüt ədədlər — sonu 0, 2, 4, 6 və 8 rəqəmlərindən biri ilə qurtaran natural ədədlərə cüt ədədlər deyilir.
Tək ədədlər — sonu 1, 3, 5, 7 və 9 rəqəmlərindən biri ilə qurtaran natural ədədlər tək ədədlər deyilir.
Natural ədədlər çoxluğu hərfi ilə işarə olunur. Deməli,
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | ||
20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | ||
30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | ||
40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | ||
50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | ||
60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | ||
70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | ||
80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | ||
90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | ||
100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | ||
110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | ||
120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | ||
130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | ||
140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | ||
150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | ||
160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | ||
170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | ||
180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | ||
190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | ||
200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | ||
210 | 220 | 230 | 240 | 250 | 260 | 270 | 280 | 290 | |||
300 | 400 | 500 | 600 | 700 | 800 | 900 | |||||
1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | |||
10000 | 20000 | 30000 | 40000 | 50000 | 60000 | 70000 | 80000 | 90000 | |||
100000 | 1000000 | 10000000 | 100000000 | ||||||||
1000000000 | 10000000000 | 100000000000 | 1000000000000 |
Ədədin böləni
n- natural ədədinin bölündüyü hər bir natural ədəd n- böləni adlanır.
Məsələn: 12 — nin bölənləri —> 1,2,3,4,6,12
Ədədin bölünəni
n-natural ədədinə qalıqsız bölünən hər bir natural ədəd n- in bölünəni adlanır.
Yalnız 1-ə və özünə bölünən ədədlərə sadə ədədlər deyilir.
Məsələn: 2;3;5;7;11;13;17;19…
İkidən çox böləni olan ədədlərə mürəkkəb ədədlər deyilir.
Məsələn: 4;6;8;9;10;12;14;16 və s. 2-dən başqa bütün cüt ədədlər mürəkkəb hesab olunur.
1 nə sadə, nə də mürəkkəb ədəddir.
Mürəkkəb ədədin sadə vuruqların hasili şəklində göstərilməsi sadə vuruqlara ayırma adlanır.
Məsələn: 120=2×2×2×3×5 və ya 120=2³×3¹×5¹
Ortaq sadə vuruqları olmayan ədədlərə qarşılıqlı sadə ədədlər deyilir.
a və b natural ədədlərinin hər ikisinin bölündüyü ən böyük natural ədədə a və b-nin ən böyük ortaq böləni deyilir və ƏBOB (a;b) kimi işarə olunur.
ƏBOB (a;b)-ni tapmaq üçün:
a və b natural ədədlərinin hər ikisinə bölünən ən kiçik natural ədədə a və b-nin ən kiçik ortaq bölünəni deyilir və ƏKOB(a;b) kimi işarə olunur.
ƏKOB və ƏBOB-a aid əsas düsdurlar
ƏBOB(a;b)•ƏKOB(a;b)=ab
ƏKOB (a;b)-ni tapmaq üçün
Riyaziyyat haqqında olan bu məqalə bu məqalə qaralama halındadır. Məqaləni redaktə edərək Vikipediyanı zənginləşdirin. |