Поиск по словарям.

Результаты поиска

OBASTAN VİKİ
Termodinamik dövrə
Termodinamik dövrə — hərəkət edən cismin vəziyyətini izah edən, başlanğıc və son nöqtələri üst-üstə düşən, termodinamikanın kürəvi prosesləridir. Başlıca termodinamik dövrəyə enerji dövrəsi və istilik nasosu dövrəsi aiddir. Güc dövrələrində istilik girişi və mexaniki iş çıxışı vardır. İstilik nasosu dövrələrində isə mexaniki iş girişi ilə aşağı istilikdən yüksək temperatura istilik ötürülür. Базаров И. П. Заблуждения и ошибки в термодинамике. Изд. 2-ое испр. М.: Едиториал УРСС, 2003. 120 с. Александров А. А. Термодинамические основы циклов теплоэнергетических установок.
Termodinamik kəmiyyətlər
Terodinamik kəmiyyətlər - termodinamik sistemlərdə prosesləri izah etmək üçün istifadə olunan fiziki kəmiyyətlərdir. Андрющенко А. И. Основы технической термодинамики реальных процессов. — М.: Высшая школа, 1967. — 268 с. Белоконь Н. И. Основные принципы термодинамики. — М.: Недра, 1968. — 112 с.
Termodinamik potensial
Termodinamik potensial — termodinamik sistemlərdə prosesləri izah etmək üçün istifadə olunan skalyar kəmiyyətlərdir. 1866-cı ildə fransız alimi Pyer Dühem tərəfindən elmə gətirilmişdir. ABŞ alimi Cozayya Uillard Gibbs elmi işlərində bir sıra termodinamik potensiallar göstərmişdir. Daxili enerji, entalpiya, Helmholts enerjisi, Hibbs enerjisi, Böyük terodinamik potensial, əlaqəli enerji kimi kəmiyyətlər termodinamik potensiallardır.
Termodinamik proseslər
Termodinamik proseslər və ya istilik prosesləri — termodinamik sistemin makroskopik vəziyyətinin dəyişməsinə deyilir. Termodinamik proseslər Termodinamik sistemdə işçi maddənin vəziyyətinin dəyişmə ardıcıllığıdır, həm tarazlıq halında olur, həm də tarazlıq olmayan vəziyyətdə olur. Bu proseslərdən mühərriklərin hərəkətə gətirilməsində, soyuducu kimi texnikaların yaradılmasında, meteorologiya və s. sahələrdə istifadə edilir.
Termodinamik sistem
Termodinamik sistem — tarazlıq vəziyyətində konsentrasiya, temperatur, təzyiq və b. hal parametrlərinin müəyyən qiymətlərilə səciyyələnən və çoxsaylı hissəcikləri (atomlar, molekullar və b.) olan fiziki sistem (cism); termodinamikada "sistem" adı altında onu xəyalən bütün ətraf mühitdən ayıran cismlər (məsələn: süxurlar, minerallar və b.) nəzərdə tutulur. Termodinamik sistem hüdudlarından kənardakı cismlər xarici mühitə aid edilir. Sistemə öz fiziki xüsusiyyətlərini dəyişən və (yaxud) öz aralarında və ətraf cismlərlə (mühitlə) qarşılıqlı əlaqəyə girərək köhnələrin yeniləşməsi, ya da tamamilə itməsi və yeni fazaların yaranmasına səbəb olan yekcins cismlər (fazalar) aiddir. Faza məfhumunu təmin edən yekcinslilik əlaməti ona əsaslanır ki, həmin cism (faza) özünün bütün hissələrində tamamilə eyni fiziki xüsusiyyətlərə və eyni kimyəvi tərkibə malik olur. Birfazalı sistemlər homogen, iki və daha artıq fazalılar isə heterogen adlanır. Bir mineralın digərindəki möhtəvisi mineralların iki bərk fazalı heterogen, qaz və maye möhtəviləri isə üç fazanın (bərk, maye və qazın) heterogen sistemini əmələ gətirir. Müxtəlif sərbəstlik dərəcəsinə görə divariantlı, monovariantlı, nonvariantlı, polivariantlı; komponentlərin sayına görə birfazalı, ikifazalı, üçfazalı, çoxfazalı; ətraf mühitə münasibətinə görə qapalı, təcrid olunmuş, açıq; fiziki-kimyəvi amillərə görə izobar-izoentropik, izotermik-izobarik, izoxor-izotermik termodinamik sistemlərə ayrılır. Geologiya terminlərinin izahlı lüğəti. Bakı: Nafta-Press.
Termodinamik tarazlıq
Termodinamik tarazlıq və ya İstilik tarazlığı Müxtəlif dərəcədə qızdırılmış iki cisim təsəvvür edək. Təbiidir ki, bu cisimlərdən hər birinin molekulları arasıkəsilmədən xaotik hərəkət (istilik hərəkəti) edir. Belə hərəkət, molekullar arasında təmas yaradır. Məhz, belə təmas nəticəsində, istilik (molekulların xaotik hərəkətinin kinetik enerjisi) nisbətən isti cisimdən soyuq cismə verilir. Enerjinin qarşılıqlı mübadiləsi, hər iki cismin eyni istilik vəziyyətinə gəlməsinədək (bir qədər sonra tanış olacağımız temperatur deyilən parametrin, hər iki maddə üçün bərabər olmasına qədər) davam edir. Heç bir xarici təsir olmadan, özbaşına davam edən bu növ proses nəticəsində meydana gələn son hal, istilik tarazlığı halı adlanır. İstilik tarazlığı halında olan sistem daxilində enerjinin makroskopik daşınma prosesi baş vermir. Lakin, bu heç də o demək deyildir ki, istilik tarazlılığı halında olan sistemin atomları (yaxud, molekulları) öz xaotik hərəkətlərini dayandırır. Daimi xaotik hərəkət sistemin bütün hallarında, o cümlədən istilik tarazlığı halında mövcuddur. İstilik tarazlığı halında da, atom və molekullar daimi toqquşur və bu toqquşmalar nəticəsində enerji mübadiləsi baş verir.
Termodinamika
Termodinamika — makroskopik cisimlərin daxili durumunu tarazılıqda öyrənən elm. Başqa sözlə termodinamika qarşılıqlı çevrilmə və enerji ötürülməsini öyrənən elmdir. Fizika elminin əsas bölmələrindən biridir. Termodinamika enerjinin və qanunların bir növdən digərinə çevrilmələrini öyrənən elm sahəsidir. İşçi maddələrin köməyi ilə istilik və mexaniki enerjilərin qarşılıqlı çevrilməsinə baxılan hissəsi texniki termodinamika adlanır. Bir-biri ilə və ətraf mühitlə qarşılıqlı əlaqəsi olan cisimləri göstərən termodinamik sistem texniki termodinamikanın əsaslarından biridir. Termodinamik sistemlərə misal olaraq silindrdə porşenin hərəkəti ilə genişlənən və ya sıxılan qazları göstərmək olar. Termodinamik sistem olan konkret fiziki şərtləri təyin etmək üçün para-metrlərin vəziyyəti adlanan göstəricilərdən istifadə olunur. Əsas parametrlərə temperatur T, təzyiq P və həcm V (və ya xüsusi həcmin əksi olan sıxlıq ρ) daxildir. Termodinamik sistemdə işçi maddənin vəziyyətinin dəyişmə ardıcıllığı termodinamik proses adlanır.
Kimyəvi termodinamika
Kimyəvi termodinamika — termodinamik metodlarla reaksiyaların birləşməsi proseslərini öyrənir.
Termodinamikanın başlanğıcı
Termodinamikanın başlanğıcı və ya Termodinamikanın qanunları — postulatlar əsasında termodinamikanın təməlini qoyan dörd qanundan ibarət başlanğıcdır. Bu başlanğıcın qanunları sayəsində mikroskopik parametrləri makroskopik şəkildə birbaşa izah olunur.
Termodinamikanın birinci qanunu
Termodinamikanın birinci qanunu və ya Termodinamikanın birinci başlanğıcı — sistemin bir haldan başqa hala keçməsi onun daxili enerjisinin dəyişməsi, xarici qüvvələrin işi ilə verilən istilik miqdarının cəminə bərabərdir. Termodinamikanın birinci qanunu ilk dəfə alman alimi Yulius Robert fon Mayer tərəfindən yaradılmışdır. Termodinamikanın birinci qanununun ifadəsi aşağıdakı kimidir: Δ U = A + Q {\displaystyle \Delta \mathbf {U=A+Q} } 1 Cisim özü iş gördükdə enerjisi azalır. 2 Cismin daxili enerjisini artırmağın iki yolu var. 1.Üzərində iş görməklə. 2.İstilik miqdarı verməklə Yuxarıdakı düsturda : A = − A {\displaystyle A=-A} olduğunu nəzərə alsaq termodinamikanın birinci qanunu Q = Δ U + A ′ {\displaystyle Q=\Delta U+A^{\prime }} şəklində də yazmaq olar, yəni sistemə verilən istilik miqdarı onun daxili enerjisinin dəyişməsinə və sistemin xarici cisimlər üzərində gördüyü işə bərabərdir. İzoxor prosesində ( V = c o n s t {\displaystyle V=const} ) qazın həcmi dəyişmir ( Δ V = 0 {\displaystyle \Delta V=0} ) və ona görə də görülən iş sıfra bərabərdir. A ′ = A = 0 {\displaystyle A^{\prime }=A=0} . Bu halda sistemə verilən istilik miqdarı onun daxili enerjisinin dəyişməsinə bərabərdir. Q = Δ U {\displaystyle Q=\Delta U} İzotermik prosesdə( T = c o n s t {\displaystyle T=const} ) və ya ( Δ T = 0 {\displaystyle \Delta T=0} ) ideal qazın daxili enerjisi dəyişmir Δ U = 0 {\displaystyle \Delta U=0} , sistemi verilən istilik miqdarı işin görülməsinə sərf olunur.
Termodinamikanın ikinci qanunu
Termodinamikanın ikinci qanunu və ya Termodinamikanın ikinci başlanğıcı — cisimlər arasında istilik proseslərinin istiqamətini məhdudlaşdıran fiziki prinsipdir. İlk dəfə alman fizik Rudolf Klauzius tərəfindən yaradılmışdır. Bolsmanın kinetik nəzəriyyə sahəsindəki işləri, Maks Plankın şüalanmanın kvant nəzəriyyəsi və Albert Eynşteynin spontan emissiya nəzəriyyəsinin əsasında bu qanun əsas yer tutur. Termodinamikanın ikinci qanunu Sadi Karno, Vilyam Kelvin və Rudolf Klauziusun adları ilə bağlıdır. 1824-cü ildə 28 yaşlı fransız mühəndisi Sadi Karnonun (1796–1832) açdığı yolu davam etdirən Tomson və Klauzius 19-cu əsrin 50-ci illərində bu gün bizə termodinamikanın ikinci qanunu adı ilə məlum olan bu qanunu müəyyənləşdirmişlər. Tarixi fakt belədir ki, Karnonun işlərindən alınan dərin mənalı nəticələr nə onun özü, nə də müasirləri tərəfindən yetərincə başa düşülmədiyinə görə, onun işlərinin nəticəsi termodinamikanın ikinci qanunu şəklində ifadə oluna bilməmişdir. Bu nəticə, yalnız Karnonun vəfatından xeyli sonra, 1850-ci ildə ingilis alimi Vilyam Kelvin (1824–1907) və alman alimi Rudolf Klauzius (1822–1888) tərəfindən qanun şəklinə salınmışdır. Daha sonralar alman alimi Maks Plank (1858–1947) və dünya elmində söz sahibi olan digər alimlər termodinamikanın ikinci qanununu özlərinə məxsus formada şərh etmişlər. Termodinamikanın ikinci qanunun müxtəlif alimlər tərəfindən müxtəlif şəkildəki şərhləri ekvivalentdir. Məna və mahiyyətcə eyni olan bu qanunun müxtəlif müəlliflərə məxsus ifadələri aşağıdakılardır: Klauzius: İstilik, özbaşına soyuq cisimdən isti cismə keçə bilməz.
Termodinamikanın qanunları
Termodinamika – istilik hadisələri haqqında elmdir. Bu hadisələrdə cismin molekulyar quruluşu nəzərə alınır və onlar termometr, manometr və başqa cihazlarla qeydə alınır. Bu cihazlar ayrı-ayrı molekulların təsirini qeydə almır. Termodinamikanın qazları cismlərin istilik xassələrini, son dərəcə böyük sayda molekullar təsir edir. Belə cismlər makrosistemlər adlanır. (Məs., balonda qaz, stəkanda su, polad ərintisi və s.) Makrosistemlərin istilik xassələri termodinamik parametrlərlə (hal göstəriciləri – istiliklə, təzyiqlə, xüsusi çəki ilə) müəyyən edilir. Bu parametrlər bəzən sistemin funksiyası adlanır. İstilik – makroskopik sistemin termodinamik tarazlıq halını xarakterizə edən fiziki kəmiyyətdir. 19-cu əsrin sonlarında molekulyar-kinetik nəzəriyyə, yaxud statistik mexanika yaradıldı. Molekulyar-kinetik nəzəriyyə böyük sayda atom və molekulların xassələrini təsvir edir.
Termodinamikanın sıfır qanunu
Termodinamikanın sıfır qanunu — temperaturu ətraflı nəzərdən keçirmək üçün termodinamik tarazlığın mövcud olması haqqında yaradılan qanundur. İlk dəfə bu qanun 1931-ci ildə ingilis fiziki Ralf Hovard Fauler tərəfindən yaradılmışdır.
Termodinamikanın üçüncü qanunu
Termodinamikanın üçüncü qanunu və ya Termodinamikanın üçüncü başlanğıcı - temperaturun tam sıfra yaxınlaşan zaman entropiyanın vəziyyətini təyin edən fiziki prinsipdir. İlk dəfə Termodinamikanın üçüncü qanunu alman kimyaçı alimi Valter Herman Nernst (1864-1941) tərəfindən yaradılmışdır. Termodinamikanın üçüncü qanununun Maks Plank tərəfindən verilən şərhində deyilir: "mütləq sıfır temperaturda sistemin ola biləcəyi bütün tarazlıq hallarında entropiya dəyişməz qalır" lim T → 0 K [ S ( T , x 2 ) − S ( T , x 1 ) ] = 0 {\displaystyle \lim \limits _{T\to \,0\,K}\left[S(T,x_{2})-S(T,x_{1})\right]=0} və ya lim T → 0 K ( ∂ S ∂ x ) T = 0 , {\displaystyle \lim \limits _{T\to \,0\,K}\left({\frac {\partial S}{\partial x}}\right)_{T}=0,} burada x {\displaystyle x} — müxtəlif termodinamik parametrdir. Termodinamikanın üçüncü qanunu Nernst tərəfindən empirik üsulla müəyyənləşdirilmişdir. Bu səbəbdən bir çox ədəbiyyatlarda bu qanun "Nernstin istilik teoremi" adlandırılır.
Aerodinamik boru
Aerodinamik boru bərk cismin (təyyarə, avtomobil, raket, körpü, bina və s.) hava axınının təsiri altında olduqda yaranan effektləri öyrənmək üçün işlənmiş sınaq qurğusudur. Ən geniş yayılmış aerodinamik boru qurğusu avtomobil və →təyyarələrin sınanmasıdır. Avtomobillərdə əsasən →hava müqaviməti və optimal qalxmanın qiymətləri tədqiq olunursa, təyyarələrdə daha çox məsələ ön planda durur: qanadların qalxma qüvvəsi və hava müqaviməti ilə yanaşı stabillik, idarəetmə və s. Son zamanlar qatar və gəmilər də aerodinamik boru vasitəsilə araşdırılır. Hündür binaların və körpülərin də bu üsulla sınanması onların stabilliyini artırır. Burada nəzərə alınmalıdır ki, bərk külək altında duran tiklilərin yırğalanmaları onların məxsusi tezliklərinə yaxın tezliyə çatmasınlar. Külək burulğanını düzgün simulyasiya etmək üçün çox vaxt tiklilərlə bərabər ətraf yerlərin də modelini qurmaq lazım gəlir. Ona görə də, sınaqlar əksər hallarda kiçik ölçüdə hazırlanmış model üzərində aparılır. Yalnız avtomobillər öz orijinal ölçülərində aerodinamik boruda tədqiq oluna bilirlər. Tədqiqat obyektlərini kiçik ölçüdə hazırladıqa sınağın keçdiyi mühit heç də həmişə reallığı əks etdirmir.
Aerodinamik mərkəz
Maye içində hərəkət edən və ya səthlərindən maye hərəkətinə məruz qalan bir aerofoilin aerodinamik mərkəzi, hücum bucağı dəyişsə də, sabit qalan burun ucu nöqtəsidir. Simmetrik profillər üçün, hücum kənarından dörddə bir məsafədir. Bu nöqtə dörddə bir veter nöqtəsi adlanır. Sınaq xarakterli məlumatlar asimmetrik profillər üçün istifadə olunur və ya təxmini dəyərlər alınır.