FUNKSİYA

[lat. functio-icra] функция (1. везифа; 2. мат. са гьисабда чӀехивал дегиш хьунлай аслу яз дегиш жедай кьадар, чӀехивал; triqonometrik funksiya тригонометриядин функция; 3. биол. организмди, органди ийидай кар, адан везифа; мес. рикӀин, дуркӀундин).
FUNİKULYOR
FURAJKA
OBASTAN VİKİ
Heş funksiya
Heş funksiya (Heşləşdirmə. ing. – hashing, rus — xеширование) – istənilən uzunluqlu giriş verilənlərin sabit uzunluqlu ikili sətirə elə çevrilməsidir ki, giriş verilənlərdə hər hansı dəyişiklik (hətta ən kiçik dəyişiklik də) çıxış sətirində ciddi dəyişiklik etsin. Bu çevrilmə adətən heş funksiya və ya bürünmə funksiyası, onun nəticəsi isə heş, heş- kod və ya məlumatın daycesti (ingiliscə message digest) və ya "məlumatın izi" (rus dilində "отпечаткa сообшения") adlanır. == Ədəbiyyat == Əliquliyev R. M., Ağayev N. B., Alıquliyev R. M., Plagiatlıqla mübarizə texnologiyaları // Bakı. İnformasiya Texnologiyaları nəşriyyatı. 2015.
Kubik funksiya
Cəbrdə kubik funksiya f ( x ) = a x 3 + b x 2 + c x + d , {\displaystyle f(x)=ax^{3}+bx^{2}+cx+d,\,} f ( x ) = 0 {\displaystyle f(x)=0} olarsa, kubik funksiya a x 3 + b x 2 + c x + d = 0. {\displaystyle ax^{3}+bx^{2}+cx+d=0.\,} Bu tənliyin həlləri f ( x ) {\displaystyle f(x)} çoxhədlisinin kökləri adlanır Əgər a , b , c {\displaystyle a,b,c} və d {\displaystyle d} sabitləri həqiqi ədədlərdirsə, o zaman bu tənliyin ən azı bir həqiqi kökü vardır (Bu, bütün tək dərəcəli çoxhədlilər üçün doğrudur). Kubik funksiyanın bütün kökləri cəbri yolla tapıla bilər. Köklər həmçinin triqonometrik yolla da tapıla bilər. Alternativ olaraq köklər Nyuton metodunun köməyi ilə də tapıla bilər. Sabitlər kompleks ədəd olmaya da bilər. Həllərin sabitin aid olduğu sahəyə aid olması vacib deyil. Məsələn sabitləri rasional ədədlər olan kubik funksiyaların kökləri irrasional hətta həqiqi olmayan kompleks ədələr də ola bilər. == Kub funksiyanın böhran nöqtələri və bükülmə nöqtəsi == Funksiyanın böhran (kritik) nöqtələri x`in elə qiymətləridir ki orada funksiyanın toxunanı 0`dır. f(x) = ax3 + bx2 + cx + d funksiyasının böhran nöqtələri x`in elə qiymətində təyin olunur ki, o qiymətdə funksiyanın birinci törəməsi 0 olsun: 3 a x 2 + 2 b x + c = 0.
Kəsilməz funksiya
Funksiyanın kəsilməzliyi — əgər lim x → x 0 {\displaystyle \lim _{x\to x_{0}}} f(x)=f( x 0 {\displaystyle x_{0}} ) (1) olarsa, yəni f(x) funksiyası x= x 0 {\displaystyle x_{0}} -da təyin olunub və istənilən Ԑ>0 üçün elə δ=δ(Ԑ, x 0 {\displaystyle x_{0}} ) >0 ədədi var ki, | x − x 0 | {\displaystyle \left\vert x-x_{0}\right\vert } ˂δ şərtini ödəyən və f(x)-in təyin oblastından olan istənilən x üçün | f ( x ) − f ( x 0 ) | {\displaystyle \left\vert f(x)-f(x_{0})\right\vert } ˂Ԑ bərabərsizliyi doğrudursa, onda f(x) funksiyası x= x 0 {\displaystyle x_{0}} -da (və ya x 0 {\displaystyle x_{0}} nöqtəsində) kəsilməz adlanır. Əgər f(x) funksiyası verilmiş X= { x } {\displaystyle \{x\}} çoxluğunun (intervalın, parçanın və i.a.) bütün nöqtələrində kəsilməzdirsə, bu funksiya X çoxluğunda kəsilməz adlanır. Əgər f(x) funksiyasının X= { x } {\displaystyle \{x\}} təyin oblastına daxil olan və ya bu çoxluğun limit nöqtəsi olan hər hansı x= x 0 {\displaystyle x_{0}} nöqtəsində (1) bərabərliyi ödənmirsə (yəni ya (a) f( x 0 {\displaystyle x_{0}} ) ədədi yoxdur,başqa sözlə,funksiya x= x 0 {\displaystyle x_{0}} nöqtəsində təyin olunmayıb, ya (b) lim{x \to x 0 {\displaystyle x_{0}} }{f(x)} yoxdur, ya da (c) (1) düsturunun hər iki tərəfinin mənası var,lakin onlar bir-birinə bərabər deyil), onda x 0 {\displaystyle x_{0}} nöqtəsi f(x) funksiyasının kəsilmə nöqtəsi adlanır. Kəsilmə nöqtələrini aşağıdakı kimi fərqləndirirlər: 1) I növ kəsilmə nöqtəsi elə x 0 {\displaystyle x_{0}} nöqtəsinə deyilir ki, bu nöqtədə sonlu sol və sağ limitləri f( x 0 {\displaystyle x_{0}} -0)= lim x → x 0 − 0 {\displaystyle \lim _{x\to x_{0}-0}} f(x), f( x 0 {\displaystyle x_{0}} +0)= lim x → x 0 + 0 {\displaystyle \lim _{x\to x_{0}+0}} f(x) var;2) II növ kəsilmə - bütün qalan nöqtələrdir. f( x 0 {\displaystyle x_{0}} +0) - f( x 0 {\displaystyle x_{0}} -0) fərqi x 0 {\displaystyle x_{0}} nöqtəsində funksiyanın sıçrayışı adlanır. Əgər f( x 0 {\displaystyle x_{0}} -0) = f( x 0 {\displaystyle x_{0}} +0) bərabərliyi ödənərsə, onda x 0 {\displaystyle x_{0}} kəsilmə nöqtəsi aradan qaldırıla bilən adlanır. Əgər f( x 0 {\displaystyle x_{0}} -0) və ya f( x 0 {\displaystyle x_{0}} +0) limitlərindən heç olmasa biri ∞ simvoluna bərabərdirsə, onda x 0 {\displaystyle x_{0}} sonsuz kəsilmə nöqtəsi adlanır. Əgər f( x 0 {\displaystyle x_{0}} -0) = f( x 0 {\displaystyle x_{0}} ) f( x 0 {\displaystyle x_{0}} +0) = f( x 0 {\displaystyle x_{0}} ) bərabərliyi ödənərsə, onda f(x) funksiyasına x 0 {\displaystyle x_{0}} nöqtəsində soldan (sağdan) kəsilməz deyilir. f(x) funksiyasının x 0 {\displaystyle x_{0}} nöqtəsində kəsilməzliyi üçün zəruri və kafi şərt üç ədədin bərabərliyidir: f( x 0 {\displaystyle x_{0}} -0) = f( x 0 {\displaystyle x_{0}} +0) = f( x 0 {\displaystyle x_{0}} ) 2.Elementar funksiyaların kəsilməzliyi.Əgər f(x) və g(x) funksiyaları x= x 0 {\displaystyle x_{0}} nöqtəsində kəsilməzdirlərsə,onda a)f(x) ± g(x) b)f(x)g(x) c) f ( x ) g ( x ) {\displaystyle {\frac {f(x)}{g(x)}}} (g( x 0 {\displaystyle x_{0}} )≠0) funksiyaları da x= x 0 {\displaystyle x_{0}} -da kəsilməzdir. Xüsusi halda: a) tam rasional P(x)= a 0 {\displaystyle a_{0}} + a 1 {\displaystyle a_{1}} x+...+ a n {\displaystyle a_{n}} x n {\displaystyle x^{n}} funksiyası istənilən x nötəsində kəsilməzdir; b) kəsr rasional R(x)= a 0 + a 1 x + .
Mürəkkəb funksiya
Tutaq ki, y = φ ( x ) {\displaystyle y=\varphi (x)} və z = f ( y ) {\displaystyle z=f(y)} uyğun olaraq X {\displaystyle X} və Y {\displaystyle Y} çoxluqlarında təyin olunan funksiyalardır, eyni zamanda φ {\displaystyle \varphi } funksiyasının qiymətlər çoxluğu f {\displaystyle f} funksiyasının təyin oblastında yerləşir. Onda hər bir x ∈ X {\displaystyle x\in X} nöqtəsində qiyməti F ( x ) = f [ φ ( x ) ] {\displaystyle F(x)=f[\varphi (x)]} olan funksiya mürəkkəb funksiya və ya φ {\displaystyle \varphi } və f {\displaystyle f} funksiyalarının superpazisiyası (kompazisiyası) adlanır. z = f [ φ ( x ) ] {\displaystyle z=f[\varphi (x)]} yazılışında y {\displaystyle y} aralıq arqument, x {\displaystyle x} isə əsas arqument və ya sərbəst dəyişən adlanır, eyni zamanda φ {\displaystyle \varphi } funksiyası daxili, f {\displaystyle f} funksiyası isə xarici funksiya adlanır. Mürəkkəb funksiyada əməllər sağdan sola yerinə yetirilir, daha doğrusu öncə φ {\displaystyle \varphi } funksiyası üzərində sonra isə f {\displaystyle f} funksiyası üzərində əməllər yerinə yetirilir. Qeyd edək ki, mürəkkəb funksiyanın aralıq arqumentlərinin sayı iki və daha çox ola bilər. Məsələn, z = f ( y ) {\displaystyle z=f(y)} , y = φ ( x ) {\displaystyle y=\varphi (x)} , x = y ( t ) {\displaystyle x=y(t)} münasibətlərində aralıq arqumentlərin sayı ikiyə bərabərdir: y {\displaystyle y} və x {\displaystyle x} . Onda mürəkkəb funksiyanı belə yazmaq olar z = f ( φ ( y ( t ) ) ) {\displaystyle z=f(\varphi (y(t)))} və ya z = f { φ [ y ( t ) ] } {\displaystyle z=f\{\varphi [y(t)]}\} . Bu mürəkkəb funksiyanın «zəncirvari» yazılışıdır.
Triqonometrik funksiya
Triqonometrik funksiyalar — elementar funksiyaların bir növüdür. Onlara sinus (sin x), kosinus (cos x), tangens (tan x), kotangens (cot x), sekans (sec x) və kosekans (cosec x) funksiyalarını aid edirlər. Triqonometrik funksiyalar adətən həndəsi yolla təyin olunur, lakin onları analitik və bəzi differensial tənliklərin həlli şəklində də təyin etmək mümkündür. Belə hallarda triqonometrik funksiyaların təyin oblastı kompleks ədədləri də əhatə edir. == Triqonometrik funksiyaların təyin olunma yolları == Triqonometrik funksiyaları adətən həndəsi yolla təyin edirlər. Fərz edək ki, müstəvidə dekart koordinat sistemində, mərkəzi koordinat başlanğıcı O nöqtəsində olmaqla R radiuslu çevrə var. Bucaqları absis oxunun müsbət istiqamətdə OB şüasına qədər dönməsi kimi qəbul edirik. Saat əqrəbinin hərəkəti istiqaməti mənfi, əks istiqamət isə müsbət hesab edilir. B nöqtəsinin koordinatlaını dekart koordinat sistemində (xB, yB) kimi qeyd edək.
Tərs funksiya
Tutaq ki, y = f ( x ) {\displaystyle y=f(x)} , x ∈ D ( f ) {\displaystyle x\in D(f)} ədədi funksiya verilmişdir. Onda hər bir x 0 ∈ D ( f ) {\displaystyle x_{0}\in D(f)} ədədinə yeganə y 0 = f ( x 0 ) ∈ E ( f ) {\displaystyle y_{0}=f(x_{0})\in E(f)} ədədi uyğundur. Funksiyanın verilən y 0 {\displaystyle y_{0}} qiymətinə görə arqumentin uyğun qiymətinin tapılmasına, daha doğrusu f ( x ) = y 0 {\displaystyle f(x)=y_{0}} , y 0 ∈ E ( f ) {\displaystyle y_{0}\in E(f)} tənliyinin x {\displaystyle x} -ə nəzərən həllinə tez-tez rast gəlinir. Həmin tənliyin bir yox, bir neçə və hətta sonsuz sayda həlli ola bilər. y = f ( x ) {\displaystyle y=f(x)} funksiyasının qrafiki ilə y = y 0 {\displaystyle y=y_{0}} düz xəttinin kəsişdiyi bütün nöqtələrin absisləri f ( x ) = y 0 {\displaystyle f(x)=y_{0}} tənliyinin Əgər f {\displaystyle f} funksiyası hər bir y 0 ∈ E ( f ) {\displaystyle y_{0}\in E(f)} qiymətini ancaq yeganə bir x 0 ∈ D ( f ) {\displaystyle x_{0}\in D(f)} qiymətində alırsa, onda o funksiya dönən adlanır. Belə funksiyalar üçün f ( x ) = y {\displaystyle f(x)=y} tənliyini istənilən y ∈ E ( f ) {\displaystyle y\in E(f)} qiymətində x-ə nəzərən birqiymətli həll etmək olar, daha doğrusu hər bir y ∈ E ( f ) {\displaystyle y\in E(f)} qiymətinə yeganə x ∈ D ( f ) {\displaystyle x\in D(f)} qiyməti uyğundur. Bu uyğunluq funksiya təyin edir, özü də f {\displaystyle f} funksiyasının tərsi adlanır və f − 1 {\displaystyle f^{-1}} simvolu ilə işarə olunur. Qeyd edək ki, hər bir y 0 ∈ E ( f ) {\displaystyle y_{0}\in E(f)} üçün y = y 0 {\displaystyle y=y_{0}} düz xətti dönən y = f ( x ) {\displaystyle y=f(x)} funksiyasının qrafikini yeganə ( x 0 , y 0 ) {\displaystyle (x_{0},y_{0})} nöqtəsində kəsir, burada f ( x 0 ) = y 0 {\displaystyle f(x_{0})=y_{0}} . Tərs funksiyanın arqumentini x {\displaystyle x} hərfi ilə, onun qiymətini isə – y {\displaystyle y} hərfi ilə işarə edərək, f {\displaystyle f} funksiyasının tərs funksiyasını y = f − 1 ( x ) , x ∈ D ( f − 1 ) {\displaystyle y=f^{-1}(x),x\in D(f^{-1})} , şəklində yazırlar. Sadəlik üçün f − 1 {\displaystyle f^{-1}} simvolu əvəzinə g {\displaystyle g} hərfindən istifadə edəcəyik.
Xətti funksiya
Xətti funksiya — y = k x + b . {\displaystyle y=kx+b.} şəklində funksiya. Təyin oblastı: D(y)=R; Bunun təyin oblastıdır. Qiymətlər çoxluğu: E(y)=R Artımı arqumentin artımı ilə mütənasibdir, qrafiki isə düz xətdir. Koordinat oxları üzərində miqyas eynidirsə, k bucaq əmsalı xətti funksiya qrafiki ilə Absis (Ox) oxu arasındakı ϕ {\displaystyle \phi } bucağın tangensinə bərabərdir (k=tg ϕ {\displaystyle \phi } ). b=0 olarsa, Xətti funksiya bircinsdir, qrafiki isə y=kx mütənasibliyini təsvir edir. Fizika və texnikada müxtəlif kəmiyyətlər arasındakı asılılığın təsviri üçün tətbiq edilir. Çoxdəyişənli xətti funksiya xətti forma adlanır. Arqument və funksiya vektorlardırsa, bircins xətti funksiya xətti çevirmədir. == Xassələri == k {\displaystyle k} əmsalı funksiya qrafikinin absis oxu ilə əmələ gətirdiyi bucağın tangensinə bərabərdir, qeyd: buradakı bucaq funksiyanın absis oxu ilə kəsişdiyi nöqtənin sağında yerləşir; k > 0 {\displaystyle k>0} olduqda, düz xətt absis oxu ilə iti bucaq əmələ gətirir və artan funksiyadır; k < 0 {\displaystyle k<0} olduqda, düz xətt absis oxu ilə kor bucaq əmələ gətirir və azalan funksiyadır; k = 0 {\displaystyle k=0} olduqda, düz xətt absis oxuna paraleldir ( y = b {\displaystyle y=b} ); b {\displaystyle b} düz xəttin ordinat oxu ilə kəsişmə nöqtəsinin kordinatını göstərir; b > 0 {\displaystyle b>0} olduqda düz xətt OY oxunu müsbət hissədə, b < 0 {\displaystyle b<0} olduqda mənfi hissədə kəsir; b = 0 {\displaystyle b=0} olduqda, düz xətt koordinat başlanğıcından keçir; y = k 1 x + b 1 {\displaystyle y=k_{1}x+b_{1}} və y = k 2 x + b 2 {\displaystyle y=k_{2}x+b_{2}} xətti funksiyalarının qarşılıqlı vəziyyəti: Əgər k 1 ≠ k 2 {\displaystyle k_{1}\neq k_{2}} olarsa, qrafiklər bir nöqtədə kəsişir; Əgər k 1 = k 2 , b 1 ≠ b 2 {\displaystyle k_{1}=k_{2},b_{1}\neq b_{2}} olarsa, qrafiklər bir-birinə paraleldir; Əgər k 1 = k 2 , b 1 = b 2 {\displaystyle k_{1}=k_{2},b_{1}=b_{2}} olarsa, qrafiklər üst-üstə düşür; Əgər k 1 × k 2 = − 1 {\displaystyle k_{1}\times k_{2}=-1} olarsa, qrafiklər bir-birinə perpendikulyardır.
Funksiya
Funksiya bu mənalara gələ bilər:
Artan funksiya
Teorem.
Boş funksiya
Boş funksiya – təyin oblastı sıfra bərabər olan funksiyaya deyilir. f A : ∅ → A .
Diferensiallanan funksiya
Əgər birdəyişənli, yaxud çoxdəyişənli f {\displaystyle f} funksiyasının P {\displaystyle P} nöqtəsində d f {\displaystyle df} diferensialı varsa, ona bu nöqtədə diferensiallanan funksiya deyilir. D {\displaystyle D} oblastının hər bir nöqtəsində diferensiallanan f {\displaystyle f} funksiyasına bu oblastda diferensiallanan funksiyası deyilir. Çoxdəyişənli y = f ( x 1 , x 2 , … , x n ) {\displaystyle y=f(x_{1},x_{2},\ldots ,x_{n})} funksiyasının P {\displaystyle P} nöqtəsində ( D {\displaystyle D} oblastında) diferensiallanan olması üçün bu nöqtədə (oblastda)onun bütün xüsusi törəmələrinin kəsilməz olması kifayətdir. == Ədəbiyyat == 1. M. Mərdanov, S. Mirzəyev, Ş. Sadıqov Məktəblinin riyaziyyatdan izahlı lüğəti. Bakı 2016, "Radius nəşriyyatı", 296 səh.
Dövri funksiya
Təbiətdə və texnikada bəzi proseslər periodik olaraq təkrar olunur. Periodik dəyişən kəmiyyətləri öyrənmək üçün dövri funksiya anlayışından istifadə olunur. Hər bir "x" ədədi ilə birlikdə "x-T" və "x+T" (T sıfırdan fərqli) ədədləri də "f" funksiyasının təyin oblastına daxildirlərsə və f ( x − T ) = f ( x ) = f ( x + T ) {\displaystyle f(x-T)=f(x)=f(x+T)} bərabərliyi ödənirsə, f funksiyasına dövrü T olan "dövri funksiya" deyilir. 0 (sıfır) istənilən funksiyanın dövrüdür. Dövrü "0" olan funksiyalar maraqlı deyil. Ona görə də T-ni sıfırdan fərqli qəbul edilir. Dövri funksiyanın tərifi aşağıdakı teoremlərlə alınır. == Teoremlər == === Teorem 1: === "T" ədədi "f" funksiyasının dövrüdürsə "(-T)" ədədi də "f" funksiyasının dövri olur. === Teorem 2: === "T1" və "T2" ədədləri f funksiyasının dövrüdürsə T1+T2 və T1-T2 ədədləri də f funksiyasının dövrü olur. === Teorem 3: === T ədədi f funksiyasının dövrüdürsə, n istənilən tam ədəd olduqda "nT" ədədi də f funksiyasının dövrüdür.
Funksiya (riyaziyyat)
Funksiya — X {\displaystyle X} çoxluğunun hər bir elementinə qarşı Y {\displaystyle Y} çoxluğunun bir elementini uyğun qoyan F {\displaystyle F} münasibəti. Bu zaman X {\displaystyle X} çoxluğu F {\displaystyle F} funksiyasının təyin oblastı, Y {\displaystyle Y} çoxluğu isə qiymətlər oblastı adlanır. F {\displaystyle F} funksiyasının X {\displaystyle X} çoxluğunu Y {\displaystyle Y} çoxluğuna qarşı qoyması aşağıdakılardan hər hansı biri ilə işarə olunur: F : X → Y {\displaystyle F\colon X\to Y} ; X ⟶ F Y {\displaystyle X{\stackrel {F}{\longrightarrow }}Y} ; y = F ( x ) {\displaystyle y=F(x)} ; F : x ↦ y {\displaystyle F\colon x\mapsto y} ; x ⟼ F y {\displaystyle x{\stackrel {F}{\longmapsto }}y} . f(x)=Burada x dəyişəni asılı olmayandır, y isə asılı dəyişəndir. Funksiya 3 üsulla verilir:analitik, cədvəl və qrafik. Tək funksiya Funksiya f(-x)=-f(x) şərtini ödəyərsə belə funksiyaya tək funksiya deyilir. Məsələn y=3x funksiyası tək funksiyadır. Qeyd: Tək funksiyanın qrafiki koordinat başlanğıcına, yəni (0,0) nöqtəsinə nəzərən; cüt funksiyanın qrafiki ordinat oxuna, yeni Oy oxuna nəzərən simmetrik olur. Qeyd: Triqonometrik funksiyaların təkliyi və ya cütlüyü: sin(-x)=-sinx (tək) cos(-x)=cosx (cüt) tg(-x)=-tgx (tək) ctg(-x)=-ctgx (tək) 3) Funksiyanın artması və azalması: X çoxluğunda arqumentin böyük qiymətinə funksiyanın böyük qiyməti uyğun gələrsə, f funksiyasına bu çoxluqda artan, arqumentin böyük qiymətinə funksiyanın kiçik qiyməti uyğun gələrsə, f funksiyasına bu çoxluqda azalan funksiya deyilir. Yeni, x1, x2€X şərtində x1<x2 , f(x1)<f(x2) isə, funksiya artan olur.
Funksiya strukturu
Funksiya strukturu — Ümumiləşdirilmiş fraza quruluşu qrammatikası, baş əsaslı fraza quruluşu qrammatikası və leksik funksional qrammatika kimi fraza quruluşu qrammatikalarında xüsusiyyət strukturu mahiyyətcə atribut-qiymət cütləri toplusudur. Məsələn, nömrə adlı atributun tək dəyəri ola bilər. Atribut dəyəri ya atom ola bilər, məs. tək və ya kompleksdəki bir xarakter (əksər hallarda bu xüsusiyyət strukturudur, həm də siyahı və ya dəstdir). Xüsusiyyət strukturu, qovşaqları dəyişənlərin dəyərlərinə və dəyişən adlarına gedən yollara uyğun gələn yönəldilmiş asiklik qrafik (DAG) kimi təqdim edilə bilər. Obyekt strukturlarında müəyyən edilmiş əməliyyatlar, məs. birləşmələrdən fraza quruluşu qrammatikalarında geniş istifadə olunur. Əksər nəzəriyyələrdə (məsələn, HPSG), xüsusiyyət strukturları adətən qeyri-rəsmi istifadə olunsa da, əməliyyatlar xüsusiyyət strukturlarının özlərində deyil, ciddi şəkildə xüsusiyyət strukturlarını təsvir edən tənliklər üzərində müəyyən edilir. Burada iki "kateqoriya" və "razılaşma" funksiyası var. "Kateqoriya" "nominal ifadə" dəyərinə malikdir, "razılaşma" dəyəri isə "rəqəm" və "şəxs" xüsusiyyətlərinin "tək" və "üçüncü" olduğu başqa xüsusiyyət strukturu ilə göstərilir.
İbtidai funksiya
İbtidai funksiya (və ya qeyri müəyyən inteqral; törəmənin əksi) verilmiş aralığın bütün nöqtələrində F(x)=f'(x) bərabərliyini ödəyən funksiya. F(x) funksiyasına həmin aralıqda f(x) funksiyasının ibtidai funksiyası deyilir. Nümunə: Göstərək ki, F ( x ) = 3 x 4 {\displaystyle F(x)=3x^{4}} funksiyası ( − ∞ ; + ∞ ) {\displaystyle (-\infty ;+\infty )} aralığında f ( x ) = 12 x 3 {\displaystyle f(x)=12x^{3}} funksiyasının ibtidai funksiyasıdır. F ′ ( x ) = ( 3 x 4 ) ′ = 3 ( x 4 ) ′ = 3 ⋅ 4 x 3 = 12 x 3 = f ( x ) {\displaystyle F'(x)=(3x^{4})'=3(x^{4})'=3\cdot 4x^{3}=12x^{3}=f(x)} Doğrudan da aralığının istənilən nöqtəsində bərabərliyi ödənilir. Tutaq ki funksiyası verilmiş aralıqda kəsilməz funksiyasının ibtidai funksiyasıdır. Onda ixtiyarı sabitı üçün funksiyası da həmin aralıqda funksiyasının ibtidai funksiyasıdır. == Əsas xassələri == Qeyri müəyyən inteqralın (ibtidai funksiya) aşağıdakı xassələri var.1: Qeyri müəyyən inteqralın törəməsi inteqralaltı funksiya diferensialı isə inteqralaltı ifadəyə bərabərdir: ( ∫ f ( x ) d x ) ′ = f ( x ) {\displaystyle (\int f(x)dx)'=f(x)} d ( ∫ f ( x ) d x ) = f ( x ) d x {\displaystyle d(\int f(x)dx)=f(x)dx} İsbatı: Tutaq ki, F(x) funksiya ibtidai f(x)-sin funksiyasıdır: F(x)=f(x). Onda ∫ f ( x ) d x = F ( x ) + C {\displaystyle \int f(x)dx=F(x)+C} yaza bilərik. Bu bərabərliyin hər iki tərəfindən törəmə alsaq, ∫ f ( x ) d x = ( F ( x ) + C ) ′ = F ′ ( x ) + C ′ {\displaystyle \int f(x)dx=(F(x)+C)'=F'(x)+C'} , yəni ∫ f ( x ) d x = f ( x ) {\displaystyle \int f(x)dx=f(x)} . 2.Kəsilməz törəməsi olan F(x) funksiyasını törəməsinin qeyri-müəyyən inteqralı onun özündən sabit toplananla fərqlənir, yəni ∫ F ′ ( x ) d x = F ( x ) + C {\displaystyle \int F'(x)dx=F(x)+C} və ya ∫ d F ′ ( x ) d x = F ( x ) + C {\displaystyle \int dF'(x)dx=F(x)+C} .
Funksiya (dəqiqləşdirmə)
Funksiya bu mənalara gələ bilər:
Hiks tələb funksiyası
Mikroiqtisadiyyatda istehlakçının Hiks tələbinə müvafiqliyi ona təyin edilmiş fayda gətirən və xərclərini minimallaşdıran məhsulların dəstəsinə tələbi bildirir. Əgər bu müvafiqlik müəyyən bir funksiyadır, onda ona Hiks tələb funksiyası, və ya əvəzini verən tələb funksiyası deyilir. Funksiya Con Hiks (John Hicks) şərəfinə adlandırılmışdır. Riyazi şəkildə: h ( p , u ¯ ) = arg ⁡ min x ∑ i p i x i {\displaystyle h(p,{\bar {u}})=\arg \min _{x}\sum _{i}p_{i}x_{i}} s u c h t h a t u ( x ) ≥ u ¯ {\displaystyle {\rm {such\ that}}\ \ u(x)\geq {\bar {u}}} Harda ki h(p,u) Hiks tələb funksiyasıdır, və ya tələb olunan məhsul dəstəsidir, p qiymətləri səviyyəsidir, və u ¯ {\displaystyle {\bar {u}}} faydadır. Burda p qiymətlərin vektorudur, və X tələb olunan miqdarların vektorudur. Deməli bütün pixi cəmi X məhsullarına gedən ümumi xərcdir. == Digər funksiyalar ilə əlaqələr == Hiks tələb funksiyaları riyazi hesablarda işlətmək asandır çünki onlar gəlirin olduğunu tələb etmirlər. Əlavə olaraq, minimallaşdırılmış olmalı funksiya x i {\displaystyle x_{i}} üzrə xəttidir, və bu optimizasiya problemini asanlaşdırır. Amma verilmiş p qiymətləri və w {\displaystyle w} gəliri ilə tələbi təsvir edən x ( p , w ) {\displaystyle x(p,w)} Marşal tələb funksiyasını birbaşa müşahidə etmək daha asandır. Hər ikisi bir biri ilə adi şəkildə əlaqədədir: h ( p , u ) = x ( p , e ( p , u ) ) , {\displaystyle h(p,u)=x(p,e(p,u)),\ } Harda e ( p , u ) {\displaystyle e(p,u)} məxaric funksiyasıdır (verilmiş fayda əldə etmək üçün minimal gəliri göstərən funksiya) h ( p , v ( p , w ) ) = x ( p , w ) , {\displaystyle h(p,v(p,w))=x(p,w),\ } Harda v ( p , w ) {\displaystyle v(p,w)} vasitəli fayda funksiyasıdır (verilmiş qiymətlər və müəyyən gəlir ilə əldə edilən faydanı göstərən funksiya).
Hiperbolik funksiyalar
Hiperbolik funksiyalar - elementar funksiyalar ailəsindəndir.Triqonometrik funksiyaların analoqu sayılır.Əsas Hiperbolik funksiyalar bunlardır: Hiperbolik sinus Hiperbolik kosinus Hiperbolik tangens Hiperbolik kotangens Tərs Hiperbolik funksiyalar isə bunlardır: Hiperbolik arksinus Hiperbolik arkskosinus Hiperbolik arkstangens Hiperbolik arkskotangens == Riyazi hesablamalarda == Hiperbolik funksiyalar aşağıdakı funksiyalardan ibarətdir: Hiperbolik sinus: sinh ⁡ x = e x − e − x 2 = e 2 x − 1 2 e x {\displaystyle \sinh x={\frac {e^{x}-e^{-x}}{2}}={\frac {e^{2x}-1}{2e^{x}}}} Hiperbolik kosinus: cosh ⁡ x = e x + e − x 2 = e 2 x + 1 2 e x {\displaystyle \cosh x={\frac {e^{x}+e^{-x}}{2}}={\frac {e^{2x}+1}{2e^{x}}}} Hiperbolik tangens: tanh ⁡ x = sinh ⁡ x cosh ⁡ x = e x − e − x e x + e − x = e 2 x − 1 e 2 x + 1 {\displaystyle \tanh x={\frac {\sinh x}{\cosh x}}={\frac {e^{x}-e^{-x}}{e^{x}+e^{-x}}}={\frac {e^{2x}-1}{e^{2x}+1}}} Hiperbolik kotangens: coth ⁡ x = cosh ⁡ x sinh ⁡ x = e x + e − x e x − e − x = e 2 x + 1 e 2 x − 1 {\displaystyle \coth x={\frac {\cosh x}{\sinh x}}={\frac {e^{x}+e^{-x}}{e^{x}-e^{-x}}}={\frac {e^{2x}+1}{e^{2x}-1}}} Hiperbolik sekans: sech x = ( cosh ⁡ x ) − 1 = 2 e x + e − x = 2 e x e 2 x + 1 {\displaystyle \operatorname {sech} \,x=\left(\cosh x\right)^{-1}={\frac {2}{e^{x}+e^{-x}}}={\frac {2e^{x}}{e^{2x}+1}}} Hiperbolik kosekans: csch x = ( sinh ⁡ x ) − 1 = 2 e x − e − x = 2 e x e 2 x − 1 {\displaystyle \operatorname {csch} \,x=\left(\sinh x\right)^{-1}={\frac {2}{e^{x}-e^{-x}}}={\frac {2e^{x}}{e^{2x}-1}}} Hiperbolik funksiyalar xəyali vahid (i) dairəsi ilə aşağıdakı kimi də ifade edilir: Hiperbolik sinus: sinh ⁡ x = − i sin ⁡ i x {\displaystyle \sinh x=-{\rm {i}}\sin {\rm {i}}x\!} Hiperbolik kosinus: cosh ⁡ x = cos ⁡ i x {\displaystyle \cosh x=\cos {\rm {i}}x\!} Hiperbolik tangens: tanh ⁡ x = − i tan ⁡ i x {\displaystyle \tanh x=-{\rm {i}}\tan {\rm {i}}x\!} Hiperbolik kotangens: coth ⁡ x = i cot ⁡ i x {\displaystyle \coth x={\rm {i}}\cot {\rm {i}}x\!} Hiperbolik sekans: sech x = sec ⁡ i x {\displaystyle \operatorname {sech} \,x=\sec {{\rm {i}}x}\!} Hiperbolik kosekans: csch x = i csc i x {\displaystyle \operatorname {csch} \,x={\rm {i}}\,\csc \,{\rm {i}}x\!} i, i2 = −1 - xəyali vahiddir. == Hiperbolik funksiyaların törəmələri == d d x sinh ⁡ x = cosh ⁡ x {\displaystyle {\frac {d}{dx}}\sinh x=\cosh x\,} d d x cosh ⁡ x = sinh ⁡ x {\displaystyle {\frac {d}{dx}}\cosh x=\sinh x\,} d d x tanh ⁡ x = 1 − tanh 2 ⁡ x = sech 2 x = 1 / cosh 2 ⁡ x {\displaystyle {\frac {d}{dx}}\tanh x=1-\tanh ^{2}x={\hbox{sech}}^{2}x=1/\cosh ^{2}x\,} d d x coth ⁡ x = 1 − coth 2 ⁡ x = − csch 2 x = − 1 / sinh 2 ⁡ x {\displaystyle {\frac {d}{dx}}\coth x=1-\coth ^{2}x=-{\hbox{csch}}^{2}x=-1/\sinh ^{2}x\,} d d x csch x = − coth ⁡ x csch x {\displaystyle {\frac {d}{dx}}\ {\hbox{csch}}\,x=-\coth x\ {\hbox{csch}}\,x\,} d d x sech x = − tanh ⁡ x sech x {\displaystyle {\frac {d}{dx}}\ {\hbox{sech}}\,x=-\tanh x\ {\hbox{sech}}\,x\,} d d x arsinh x = 1 x 2 + 1 {\displaystyle {\frac {d}{dx}}\,\operatorname {arsinh} \,x={\frac {1}{\sqrt {x^{2}+1}}}} d d x arcosh x = 1 x 2 − 1 {\displaystyle {\frac {d}{dx}}\,\operatorname {arcosh} \,x={\frac {1}{\sqrt {x^{2}-1}}}} d d x artanh x = 1 1 − x 2 {\displaystyle {\frac {d}{dx}}\,\operatorname {artanh} \,x={\frac {1}{1-x^{2}}}} d d x arcsch x = − 1 | x | 1 + x 2 {\displaystyle {\frac {d}{dx}}\,\operatorname {arcsch} \,x=-{\frac {1}{\left|x\right|{\sqrt {1+x^{2}}}}}} d d x arsech x = − 1 x 1 − x 2 {\displaystyle {\frac {d}{dx}}\,\operatorname {arsech} \,x=-{\frac {1}{x{\sqrt {1-x^{2}}}}}} d d x arcoth x = 1 1 − x 2 {\displaystyle {\frac {d}{dx}}\,\operatorname {arcoth} \,x={\frac {1}{1-x^{2}}}} == Hiperbolik funksiyaların inteqralları == ∫ sinh ⁡ a x d x = a − 1 cosh ⁡ a x + C {\displaystyle \int \sinh ax\,dx=a^{-1}\cosh ax+C} ∫ cosh ⁡ a x d x = a − 1 sinh ⁡ a x + C {\displaystyle \int \cosh ax\,dx=a^{-1}\sinh ax+C} ∫ tanh ⁡ a x d x = a − 1 ln ⁡ ( cosh ⁡ a x ) + C {\displaystyle \int \tanh ax\,dx=a^{-1}\ln(\cosh ax)+C} ∫ coth ⁡ a x d x = a − 1 ln ⁡ ( sinh ⁡ a x ) + C {\displaystyle \int \coth ax\,dx=a^{-1}\ln(\sinh ax)+C} ∫ d u a 2 + u 2 = sinh − 1 ⁡ ( u a ) + C {\displaystyle \int {\frac {du}{\sqrt {a^{2}+u^{2}}}}=\sinh ^{-1}\left({\frac {u}{a}}\right)+C} ∫ d u u 2 − a 2 = cosh − 1 ⁡ ( u a ) + C {\displaystyle \int {\frac {du}{\sqrt {u^{2}-a^{2}}}}=\cosh ^{-1}\left({\frac {u}{a}}\right)+C} ∫ d u a 2 − u 2 = a − 1 tanh − 1 ⁡ ( u a ) + C ; u 2 < a 2 {\displaystyle \int {\frac {du}{a^{2}-u^{2}}}=a^{-1}\tanh ^{-1}\left({\frac {u}{a}}\right)+C;u^{2}<a^{2}} ∫ d u a 2 − u 2 = a − 1 coth − 1 ⁡ ( u a ) + C ; u 2 > a 2 {\displaystyle \int {\frac {du}{a^{2}-u^{2}}}=a^{-1}\coth ^{-1}\left({\frac {u}{a}}\right)+C;u^{2}>a^{2}} ∫ d u u a 2 − u 2 = − a − 1 sech − 1 ⁡ ( u a ) + C {\displaystyle \int {\frac {du}{u{\sqrt {a^{2}-u^{2}}}}}=-a^{-1}\operatorname {sech} ^{-1}\left({\frac {u}{a}}\right)+C} ∫ d u u a 2 + u 2 = − a − 1 csch − 1 ⁡ | u a | + C {\displaystyle \int {\frac {du}{u{\sqrt {a^{2}+u^{2}}}}}=-a^{-1}\operatorname {csch} ^{-1}\left|{\frac {u}{a}}\right|+C} C sabit ədəddir. == Loqarifmaaltı tərs hiperbolik funksiyalar == arsinh x = ln ⁡ ( x + x 2 + 1 ) {\displaystyle \operatorname {arsinh} \,x=\ln \left(x+{\sqrt {x^{2}+1}}\right)} arcosh x = ln ⁡ ( x + x 2 − 1 ) ; x ≥ 1 {\displaystyle \operatorname {arcosh} \,x=\ln \left(x+{\sqrt {x^{2}-1}}\right);x\geq 1} artanh x = 1 2 ln ⁡ 1 + x 1 − x ; | x | < 1 {\displaystyle \operatorname {artanh} \,x={\tfrac {1}{2}}\ln {\frac {1+x}{1-x}};\left|x\right|<1} arcoth x = 1 2 ln ⁡ x + 1 x − 1 ; | x | > 1 {\displaystyle \operatorname {arcoth} \,x={\tfrac {1}{2}}\ln {\frac {x+1}{x-1}};\left|x\right|>1} arsech x = ln ⁡ 1 + 1 − x 2 x ; 0 < x ≤ 1 {\displaystyle \operatorname {arsech} \,x=\ln {\frac {1+{\sqrt {1-x^{2}}}}{x}};0<x\leq 1} arcsch x = ln ⁡ ( 1 x + 1 + x 2 | x | ) {\displaystyle \operatorname {arcsch} \,x=\ln \left({\frac {1}{x}}+{\frac {\sqrt {1+x^{2}}}{\left|x\right|}}\right)} == Teylor ardıcıllığı üçün hiperbolik funksiyalar == sinh ⁡ x = x + x 3 3 ! + x 5 5 ! + x 7 7 ! + ⋯ = ∑ n = 0 ∞ x 2 n + 1 ( 2 n + 1 ) ! {\displaystyle \sinh x=x+{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+{\frac {x^{7}}{7!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{(2n+1)!}}} cosh ⁡ x = 1 + x 2 2 ! + x 4 4 ! + x 6 6 ! + ⋯ = ∑ n = 0 ∞ x 2 n ( 2 n ) !
Kobb-Duqlas istehsal funksiyası
Amerikan alimləri Ç.Kobb və P.Duqlasın adları ilə bağlı yaratdıqları «Kobb-Duqlas funksiyası» ekonometrik nailiyyətlərin ən geniş tətbiq məhsullarındandır. ABŞ-nin XX əsrin 20-ci illərində emal sənayesinə hesablanan «Kobb-Duqlas funksiyası» istehsal həcminin istehsalın əsas faktorları əmək və kapitaldan asılılığını ifadə edir. Bu funksiyaya görə istehsal həcmi iki faktorla istifadə edilən istehsal vasitələri kapital və əməyin miqdarı ilə təyin olunur. == Kobb-Duqlas funksiyası == İstehsal funksiyasının ümumi düsturu Y = AF(K,N) şəklindədir. Bununla belə, Kobb-Duqlas kimi spesifik düsturlar da mövcuddur: Y = AKθ N1-θ. Burada (1-θ) və θ uyğun olaraq əmək və kapitalın gəlirdəki xüsusi çəkilərini göstərir. Kobb-Duqlas funksiyası iqtisadiyyatı dəqiq təsvir etdiyinə və riyazi cəhətdən asan təfsir olunduğuna görə iqtisadçılar tərəfindən geniş istifadə edilir. Məsələn, Kobb-Duqlas funksiyasından istifadə etməklə kapitalın marjinal məhsuldarlığını (KMM) aşağıdakı şəkildə ifadə edə bilərik: KMM = θAKθ-1 N1-θ = θA(K/N)-(1-θ) = θY/K Kobb–Duqlas istehsal funksiyası qeyri xəttidir: Y = ALαKβε Ancaq funksiyanın hər iki tərəfini təbii loqarifm götürməklə xətti hala transformasiya etmək mümkündür: lnY = lnA + αlnL + βlnK + lnε Kobb-Duqlas funksiyasının başlıca cəhətləri aşağıdakılardır: Mənfəətin və xərclərin xüsusi çəkisinin dəyişmədiyi, yığımın olmadığı və istehsalın (əmək və kapital) elastikliyinin vahidə bərabər olduğu fərz edilir; İstehsal amillərinin bir-birini əvəz etmələri sıfırla vahid ara­sın­da tərəddüd edir və adətən vahiddən kiçikdir; Qarşılıqlı əvəzet­mələrin hüdudu texniki inkişaf səviyyəsi ilə müəyyən edilir; Əməyin kapital ilə əvəz olunması imkanları nəzəri cəhət-dən sonsuzdur; İstehsal amil­ləri keyfiyyətinin dəyişməsi nəzərə alınmır, yəni, texniki tərəq­qidən sərfnəzər edilir. Buradan da belə bir nəticə çıxarmaq olar ki, fun­ksiya yalnız ekstensiv iqtisadi artım üçün münasibdir. == Tarix == İstehsal funksiyalarının irəli sürülməsi tarixi sənayeləşmə dövrünə təsadüf edir.
Kvadratik funksiyanın qrafiki
Kəsilməz funksiyalar
Funksiyanın kəsilməzliyi — əgər lim x → x 0 {\displaystyle \lim _{x\to x_{0}}} f(x)=f( x 0 {\displaystyle x_{0}} ) (1) olarsa, yəni f(x) funksiyası x= x 0 {\displaystyle x_{0}} -da təyin olunub və istənilən Ԑ>0 üçün elə δ=δ(Ԑ, x 0 {\displaystyle x_{0}} ) >0 ədədi var ki, | x − x 0 | {\displaystyle \left\vert x-x_{0}\right\vert } ˂δ şərtini ödəyən və f(x)-in təyin oblastından olan istənilən x üçün | f ( x ) − f ( x 0 ) | {\displaystyle \left\vert f(x)-f(x_{0})\right\vert } ˂Ԑ bərabərsizliyi doğrudursa, onda f(x) funksiyası x= x 0 {\displaystyle x_{0}} -da (və ya x 0 {\displaystyle x_{0}} nöqtəsində) kəsilməz adlanır. Əgər f(x) funksiyası verilmiş X= { x } {\displaystyle \{x\}} çoxluğunun (intervalın, parçanın və i.a.) bütün nöqtələrində kəsilməzdirsə, bu funksiya X çoxluğunda kəsilməz adlanır. Əgər f(x) funksiyasının X= { x } {\displaystyle \{x\}} təyin oblastına daxil olan və ya bu çoxluğun limit nöqtəsi olan hər hansı x= x 0 {\displaystyle x_{0}} nöqtəsində (1) bərabərliyi ödənmirsə (yəni ya (a) f( x 0 {\displaystyle x_{0}} ) ədədi yoxdur,başqa sözlə,funksiya x= x 0 {\displaystyle x_{0}} nöqtəsində təyin olunmayıb, ya (b) lim{x \to x 0 {\displaystyle x_{0}} }{f(x)} yoxdur, ya da (c) (1) düsturunun hər iki tərəfinin mənası var,lakin onlar bir-birinə bərabər deyil), onda x 0 {\displaystyle x_{0}} nöqtəsi f(x) funksiyasının kəsilmə nöqtəsi adlanır. Kəsilmə nöqtələrini aşağıdakı kimi fərqləndirirlər: 1) I növ kəsilmə nöqtəsi elə x 0 {\displaystyle x_{0}} nöqtəsinə deyilir ki, bu nöqtədə sonlu sol və sağ limitləri f( x 0 {\displaystyle x_{0}} -0)= lim x → x 0 − 0 {\displaystyle \lim _{x\to x_{0}-0}} f(x), f( x 0 {\displaystyle x_{0}} +0)= lim x → x 0 + 0 {\displaystyle \lim _{x\to x_{0}+0}} f(x) var;2) II növ kəsilmə - bütün qalan nöqtələrdir. f( x 0 {\displaystyle x_{0}} +0) - f( x 0 {\displaystyle x_{0}} -0) fərqi x 0 {\displaystyle x_{0}} nöqtəsində funksiyanın sıçrayışı adlanır. Əgər f( x 0 {\displaystyle x_{0}} -0) = f( x 0 {\displaystyle x_{0}} +0) bərabərliyi ödənərsə, onda x 0 {\displaystyle x_{0}} kəsilmə nöqtəsi aradan qaldırıla bilən adlanır. Əgər f( x 0 {\displaystyle x_{0}} -0) və ya f( x 0 {\displaystyle x_{0}} +0) limitlərindən heç olmasa biri ∞ simvoluna bərabərdirsə, onda x 0 {\displaystyle x_{0}} sonsuz kəsilmə nöqtəsi adlanır. Əgər f( x 0 {\displaystyle x_{0}} -0) = f( x 0 {\displaystyle x_{0}} ) f( x 0 {\displaystyle x_{0}} +0) = f( x 0 {\displaystyle x_{0}} ) bərabərliyi ödənərsə, onda f(x) funksiyasına x 0 {\displaystyle x_{0}} nöqtəsində soldan (sağdan) kəsilməz deyilir. f(x) funksiyasının x 0 {\displaystyle x_{0}} nöqtəsində kəsilməzliyi üçün zəruri və kafi şərt üç ədədin bərabərliyidir: f( x 0 {\displaystyle x_{0}} -0) = f( x 0 {\displaystyle x_{0}} +0) = f( x 0 {\displaystyle x_{0}} ) 2.Elementar funksiyaların kəsilməzliyi.Əgər f(x) və g(x) funksiyaları x= x 0 {\displaystyle x_{0}} nöqtəsində kəsilməzdirlərsə,onda a)f(x) ± g(x) b)f(x)g(x) c) f ( x ) g ( x ) {\displaystyle {\frac {f(x)}{g(x)}}} (g( x 0 {\displaystyle x_{0}} )≠0) funksiyaları da x= x 0 {\displaystyle x_{0}} -da kəsilməzdir. Xüsusi halda: a) tam rasional P(x)= a 0 {\displaystyle a_{0}} + a 1 {\displaystyle a_{1}} x+...+ a n {\displaystyle a_{n}} x n {\displaystyle x^{n}} funksiyası istənilən x nötəsində kəsilməzdir; b) kəsr rasional R(x)= a 0 + a 1 x + .
Marşal tələb funksiyası
Mikroiqtisadiyyatda istifadə olunan Marşal tələb funksiyası (ing. Marshallian demand function) (Alfred Marşal şərəfinə) göstərir ki, istehlakçı hər bir qiymət və var-dövlət vəziyyətində nə qədər alacaq, nəzərə alaraq ki bu qərar faydanın maksimallaşdırılmasının problemini həll edəcək. Marşal tələb funksiyası həm də Valras tələbi (Leon Valrasın şərəfinə) və ya "əvəzini verməyən tələb funksiyası" kimi tanınır, çünki Marşalın ilkin təhlili var-dövlətin effektlərini nəzərə almırdı. Faydanın maksimallaşdırılması probleminə uyğun olaraqMas-Colell, Andreu; Whinston, Michael; Green, Jerry. Microeconomic Theory. Oxford: Oxford University Press. 1995. ISBN 0-19-507340-1., p qiymətlərinə L məhsullar var. w var-dövlətinə malik olan istehlakçı və bir sıra imkanı çatan seçimlər mövcüddur: B ( p , w ) = { x : ⟨ p , x ⟩ ≤ w } {\displaystyle B(p,w)=\{x:\langle p,x\rangle \leq w\}} , burada, ⟨ p , x ⟩ {\displaystyle \langle p,x\rangle } qiymətlərin daxili məhsul fəzası və məhsulların sayıdır. İstehlakçının faydalılıq düsturu aşağıdakı kimidir: u : R + L → R {\displaystyle u:{\textbf {R}}_{+}^{L}\rightarrow {\textbf {R}}} .
Myöbius funksiyası
Ədədlər nəzəriyyəsində əsas yerlədən birini də Myöbius funksiyası tutur. Myöbius funksiyasını μ ( x ) {\displaystyle \mu (x)} kimi işarə edirlər. TƏRİF. Aşağıdakı şərtlər təyin edilən μ ( x ) {\displaystyle \mu (x)} funksiyası Myöbius funksiyası adlanır: 1) μ ( x ) = 1 {\displaystyle \mu (x)=1} ; 2) n > 1 {\displaystyle n>1} və n = p 1 ⋅ p 2 ⋯ p k {\displaystyle n=p_{1}\cdot p_{2}\cdots p_{k}} kanonik ayrılışı üçün μ ( n ) = ( − 1 ) k {\displaystyle \mu (n)=(-1)^{k}} (göründüyü üzrə k {\displaystyle k} ədədi n {\displaystyle n} -in sadə bölənlərinin sayıdır); 3) n {\displaystyle n} natural ədədi p 2 {\displaystyle p^{2}} -na bölünürsə( n ⋮ ¯ p 2 {\displaystyle n{\overline {\vdots }}p^{2}} , p {\displaystyle p} -sadə ədəddir), μ ( n ) = 0 {\displaystyle \mu (n)=0} Misal 1: 1. μ ( 30 ) = μ ( 2 ⋅ 3 ⋅ 5 ) = ( − 1 ) 3 = − 1 ; {\displaystyle \mu (30)=\mu (2\cdot 3\cdot 5)=(-1)^{3}=-1;} μ ( 85 ) = μ ( 5 ⋅ 13 ) = ( − 1 ) 2 = 1 ; {\displaystyle \mu (85)=\mu (5\cdot 13)=(-1)^{2}=1;} μ ( 28 ) = μ ( 2 2 ⋅ 7 ) = 0 ; {\displaystyle \mu (28)=\mu (2^{2}\cdot 7)=0;} μ ( 48 ) = μ ( 2 4 ⋅ 3 ) = 0 ; {\displaystyle \mu (48)=\mu (2^{4}\cdot 3)=0;} μ ( 105 ) = μ ( 3 ⋅ 5 ⋅ 7 ) = ( − 1 ) 3 = − 1 ; {\displaystyle \mu (105)=\mu (3\cdot 5\cdot 7)=(-1)^{3}=-1;} 2. μ ( 1 ) = 1 ; {\displaystyle \mu (1)=1;} μ ( 5 ) = − 1 ; {\displaystyle \mu (5)=-1;} μ ( 9 ) = 0 ; {\displaystyle \mu (9)=0;} μ ( 2 ) = − 1 ; {\displaystyle \mu (2)=-1;} μ ( 6 ) = 1 ; {\displaystyle \mu (6)=1;} μ ( 10 ) = 1 ; {\displaystyle \mu (10)=1;} μ ( 3 ) = − 1 ; {\displaystyle \mu (3)=-1;} μ ( 7 ) = − 1 ; {\displaystyle \mu (7)=-1;} μ ( 11 ) = − 1 ; {\displaystyle \mu (11)=-1;} μ ( 4 ) = 0 ; {\displaystyle \mu (4)=0;} μ ( 8 ) = 0 ; {\displaystyle \mu (8)=0;} μ ( 12 ) = 0 ; {\displaystyle \mu (12)=0;} Myöbius funksiyasının sadə xassələrinə aid olan aşağıdakı teoremlərlə tanış olaq. Teorem 1. Myöbius funksiyası multiplikativ funksiyadır, yəni ( n 1 , n 2 ) = 1 {\displaystyle (n_{1},n_{2})=1} üçün μ ( n 1 ⋅ n 2 ) = μ ( n 1 ) ⋅ μ ( n 2 ) ; {\displaystyle \mu (n_{1}\cdot n_{2})=\mu (n_{1})\cdot \mu (n_{2});} Teorem 2. İxtiyari n {\displaystyle n} natural ədədi ( n > 1 ) {\displaystyle (n>1)} və onun n / d {\displaystyle n/d} natural bölənləri cəmi üçün ∑ n / d μ ( d ) = 0. {\displaystyle \sum \limits _{n/d}\mu (d)=0.} Misal 2: n = 252. {\displaystyle n=252.} n = 252 = 2 2 ⋅ 3 2 ⋅ 7.
Mədəniyyətin funksiyaları
Geniş mənada mədəniyyət , yəni onun hər iki təzahür formaları – maddi və mənəvi mədəniyyət məkan və zaman çərçivəsində insanları birləşdirərək dünyanın təkmilləşdirilməsinə doğru yönəldilir. Bu mənada mədəniyyətin ən vacid vəzifəsini insanları vahid bəşəriyyət timsalında birləşdirərək konkret ictimai funksiyaların reallaşdırılmasını təmin etmək təşkil edirdi. Tarixi inkişaf prosesində mədəniyyətin bir sıra funksiyaları formalaşmışdır: ətraf aləmə uyğunlaşma funksiyası; dərketmə funksiyası, informativ funksiya, kommunikativ funksiya, requlyativ funksiya, insan qruplarının inteqrasiyası funksiyası, sosiallaşma funksiyası. Bu funksiyaların hər birinin qısa şərhə ehtiyacı olduğundan onların hər biri üzərində dayanaq. == Mədəniyyətin funksiyaları == === Mühitə uyğunlaşma funksiyası === Mühitə uyğunlaşma funksiyası – ən qədim funksiyalardan hesab edilərək iki mühüm şəraiti – təbii (təbiət) və sosial şəraitə uyğunlaşmanı nəzərdə tutur. Əgər ən qədim əcdadlarımız üçün heyvan dərisi, od mədəniyyətin qədim, ilkin nümunələri hesab edilirdisə, müasirlərimiz üçün bunu kosmik libaslar, məsələn, skafandr və ya dərin su üçün nəzərdə tutulan batiskado əvəz edir. Bütün bunlar son məqamda insanın təbiətə, mühitə uyğunlaşması funksiyasını yerinə yetirir. Lakin qeyd edildiyi kimi, insan təkcə təbiətin deyil, həm də cəmiyyətin üzvüdür. Burada isə, mədəniyyət çərçivəsində uyğunlaşma vasitələri hazırlanır: dövlət qərar və strukturlarından başlamış müdafiə və hücuma hazırlıq alətlərinin mövcudluğuna qədər – hər şey insanın mənafe və uyğunlaşmasına aid edilir. cəmiyyətdə uyğunlaşmanın mütləqləşdirilməsi «sosial darvinizm» doktrinasının əsasını qoymuşdur.
Məxaric funksiyası
Məxaric funksiyası (ing. Expenditure function) mikroiqtisadiyyatda istifadə olunan və müəyyən bir fayda əldə etmək üçün (fayda funksiyası və qiymətlər verilmiş halda) minimal pul məbləğini göstərən funksiyadır. Riyazi şəkildə, əgər L məhsulları üzrə üstün tutmanı təsvir edən u {\displaystyle u} fayda funksiyası mövcüddursa, onda xərc funksiyası budur: e ( p , u ∗ ) : R + L × R → R {\displaystyle e(p,u^{*}):{\textbf {R}}_{+}^{L}\times {\textbf {R}}\rightarrow {\textbf {R}}} O, göstərir ki, u ∗ {\displaystyle u^{*}} faydasını hansı pul məbləği ilə almaq mümkündür, əgər qiymətlər p {\displaystyle p} kimi təyin olunub. Bu funksiya aşağıdakı kimi təyin olunur: e ( p , u ∗ ) = min x ∈≥ ( u ∗ ) p ⋅ x {\displaystyle e(p,u^{*})=\min _{x\in \geq (u^{*})}p\cdot x} burada x {\displaystyle x} ≥ ( u ∗ ) = { x ∈ R + L : u ( x ) ≥ u ∗ } {\displaystyle \geq (u^{*})=\{x\in {\textbf {R}}_{+}^{L}:u(x)\geq u^{*}\}} faydası ən azı u ∗ {\displaystyle u^{*}} olan bütün seçimlərdir.
Qauss funksiyalarının inteqrallarının siyahısı
Bu ifadələrdə, ϕ ( x ) = 1 2 π e − 1 2 x 2 {\displaystyle \phi (x)={\frac {1}{\sqrt {2\pi }}}e^{-{\frac {1}{2}}x^{2}}} standart normal ehtimal sıxlığı funksiyası, Φ ( x ) = ∫ − ∞ x ϕ ( t ) d t = 1 2 ( 1 + erf ⁡ ( x 2 ) ) {\displaystyle \Phi (x)=\int _{-\infty }^{x}\phi (t)\,dt={\frac {1}{2}}\left(1+\operatorname {erf} \left({\frac {x}{\sqrt {2}}}\right)\right)} müvafiq kumulativ paylama funksiyası (erf xəta funksiyasdır) və T ( h , a ) = ϕ ( h ) ∫ 0 a ϕ ( h x ) 1 + x 2 d x {\displaystyle T(h,a)=\phi (h)\int _{0}^{a}{\frac {\phi (hx)}{1+x^{2}}}\,dx} Ouen funksiyasıdır. == Qeyri-müəyyən inteqrallar == ∫ ϕ ( x ) d x = Φ ( x ) + C {\displaystyle \int \phi (x)\,dx=\Phi (x)+C} ∫ x ϕ ( x ) d x = − ϕ ( x ) + C {\displaystyle \int x\phi (x)\,dx=-\phi (x)+C} ∫ x 2 ϕ ( x ) d x = Φ ( x ) − x ϕ ( x ) + C {\displaystyle \int x^{2}\phi (x)\,dx=\Phi (x)-x\phi (x)+C} ∫ x 2 k + 1 ϕ ( x ) d x = − ϕ ( x ) ∑ j = 0 k ( 2 k ) ! ! ( 2 j ) ! ! x 2 j + C {\displaystyle \int x^{2k+1}\phi (x)\,dx=-\phi (x)\sum _{j=0}^{k}{\frac {(2k)!!}{(2j)!!}}x^{2j}+C} ∫ x 2 k + 2 ϕ ( x ) d x = − ϕ ( x ) ∑ j = 0 k ( 2 k + 1 ) ! ! ( 2 j + 1 ) ! ! x 2 j + 1 + ( 2 k + 1 ) !
Rieman zeta funksiyası
Rieman zeta funksiyası — riyaziyyatda alman riyaziyyatçı Bernard Rieman tərəfindən 1859-cu ildə tapılmış, müəyyən bir qiymətdən kiçik ədədlər üzərinə aid edilən, ədədlərə aid qanunlarda önəmli yeri olan xüsusi bir funksiya. Riemann zeta funksiyası fərqli formalarda ifadə edilsə də ən geniş yayılmış halı ζ ( s ) = ∑ n = 1 ∞ 1 n s = 1 1 s + 1 2 s + 1 3 s + ⋯ {\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}={\frac {1}{1^{s}}}+{\frac {1}{2^{s}}}+{\frac {1}{3^{s}}}+\cdots \;\;\;\;\;\;\;\!} şəklindədir.
Siqmoid funksiyası
Siqmoid funksiyası — Qrafiki "S" hərfinə bənzəyən riyazi funksiya. Riyazi dillə ifadə etsək, siqmoid funksiyanın təyin oblastı bütün həqiqi ədədlər çoxluğu olub ( x ∈ R {\displaystyle x\in \mathbb {R} } ), törəməsi həmişə sıfırdan böyükdür: f ′ ( x ) > 0 {\displaystyle f'(x)>0} ; yalnız bir əyilmə nöqtəsi var, yəni funksiyanın ikinci tərtib törəməsi yalnız bir dəfə sıfırlanır: ∀ x , ∃ ! f ″ ( x ) = 0 {\displaystyle \forall x,\exists !f''(x)=0} . Gompertz funksiyasını da bu formalı funksiyalara misal göstərmək olar. Gompertz funksiyasının da əyrisi siqmoiddir. Siqmoid funksiyalardan olan loqistik funksiyanın qiymətlər oblastı ( 0 ; 1 ) {\displaystyle (0;1)} aralığıdır. x → − ∞ {\displaystyle x\to -\infty } olduqda funksiyanın qiyməti sıfıra, x → ∞ {\displaystyle x\to \infty } olduqda isə birə yaxınlaşır: S ( t ) = 1 1 + e − t . {\displaystyle S(t)={\frac {1}{1+e^{-t}}}.} Loqistik funksiyadan başqa arktangens( a r c t g {\displaystyle \mathrm {arctg} \,} ), hiperbolik tangens( tanh {\displaystyle \tanh } ), xəta funksiyası( erf {\displaystyle \operatorname {erf} \,} ) da oxşar xassəli qrafikə malik olduğu üçün siqmoid funksiyalardan hesab olunur. Əsasən Süni Neyron Şəbəkələrində neyronların aktivləşdirilməsində istifadə olunur. Həmçinin normal paylanma, statistikada istifadə olunur.
Torpağın ekoloji funksiyaları
İ.A.Krupenikov, V.A.Kovda (1985), Q.V.Dobrovolski, Y.D.Nikitin (1990) və özünün (Krupenikov, 1992) elmi işlərinə və ələrinə əsaslanaraq torpağın aşağıdakı əsas ekoloji funksiyalarını göstərir. == Energetik funksiya == Energetik funksiya - Enerjinin çox miqdarı torpağın mineral səsində toplanır, lakin bu enerji olduqca stabil olub onun məhsuldarlığını təmin edir, maddələrin dövranı proseslərində və ekosistemlərin bioloji məhsuldarlığında isə nisbətən az iştirak edir. Digər mühüm məsələ odur ki, bitki fotosintez prosesində günəş enerjisini toplayır. Canlı maddədə onun dövranı tez (bir neçə il, on illər) başa çatır, lakin canlı maddə ölmüş, quru (bitki) halında torpağa düşdükdə qismən ilkin son məhsullara (su, CO2, azot və başqa kimyəvi maddələr) qədər parçalanır, qismən isə humusa çevrilir. Humusda böyük (əsrliklər) enerji ehtiyatı cəmləşərək hər il bioloji dövrandan kənarlaşır və beləliklə torpağın güclü enerji potensialı yaranır. == Hidroloji funksiya. == Hidroloji funksiya - Əgər torpaq olmasaydı okeanla quru arasında suyun dövranı tez başa çatardı. Yer səthinə düşən atmosfer yağıntıları yamac boyu böyük sürətlə axıb çaylara, sonra isə dəniz və okeanlara axıb gedərdi. Özünün humusluluğu, strukturluğu (aqreqatlığı), məsaməliyi, sukeçiriciliyi və rütubət tutumu ilə torpaq suyun dövranını kəskin zəiflədir, müntəzəmləşdirir, quruda suyun böyük və geniş differensial ehtiyatının yaranmasına şərait yaradır. Bu sular tədricən yabanı və mədəni bitkilər tərəfindən istifadə olunur.
Triqonometrik funksiyalar
Triqonometrik funksiyalar — elementar funksiyaların bir növüdür. Onlara sinus (sin x), kosinus (cos x), tangens (tan x), kotangens (cot x), sekans (sec x) və kosekans (cosec x) funksiyalarını aid edirlər. Triqonometrik funksiyalar adətən həndəsi yolla təyin olunur, lakin onları analitik və bəzi differensial tənliklərin həlli şəklində də təyin etmək mümkündür. Belə hallarda triqonometrik funksiyaların təyin oblastı kompleks ədədləri də əhatə edir. == Triqonometrik funksiyaların təyin olunma yolları == Triqonometrik funksiyaları adətən həndəsi yolla təyin edirlər. Fərz edək ki, müstəvidə dekart koordinat sistemində, mərkəzi koordinat başlanğıcı O nöqtəsində olmaqla R radiuslu çevrə var. Bucaqları absis oxunun müsbət istiqamətdə OB şüasına qədər dönməsi kimi qəbul edirik. Saat əqrəbinin hərəkəti istiqaməti mənfi, əks istiqamət isə müsbət hesab edilir. B nöqtəsinin koordinatlaını dekart koordinat sistemində (xB, yB) kimi qeyd edək.
Triqonometrik funksiyaların inteqralları siyahısı
Triqonometrik funksiyaların inteqralları siyahısı — bütün Triqonometrik funksiyaların inteqralları haqqında olan düsturları cəmləşdirir. Düsturlardan qeyd etmək lazımdır ki, C (yəni, konstant) heç vaxt sıfra bərabər deyildir. == Əsas Triqonometrik funksiyaların inteqralları == ∫ sin ⁡ ( a x + b ) d x = − 1 a cos ⁡ ( a x + b ) + C {\displaystyle \int \sin(ax+b)\,dx=-{\frac {1}{a}}\cos(ax+b)+C} ∫ cos ⁡ ( a x + b ) d x = 1 a sin ⁡ ( a x + b ) + C {\displaystyle \int \cos(ax+b)\,dx={\frac {1}{a}}\sin(ax+b)+C} ∫ tan ⁡ ( a x ) d x = − 1 a ln ⁡ | cos ⁡ ( a x ) | + C = 1 a ln ⁡ | sec ⁡ ( a x ) | + C {\displaystyle \int \tan(ax)\,dx=-{\frac {1}{a}}\ln |\cos(ax)|+C={\frac {1}{a}}\ln |\sec(ax)|+C} ∫ cotan ⁡ ( a x ) d x = 1 a ln ⁡ | sin ⁡ ( a x ) | + C {\displaystyle \int \operatorname {cotan} (ax)\,dx={\frac {1}{a}}\ln |\sin(ax)|+C} ∫ sin ⁡ ( x ) d x = − cos ⁡ ( x ) + C {\displaystyle \int \sin(x)\,dx=-\cos(x)+C} ∫ cos ⁡ ( x ) d x = sin ⁡ ( x ) + C {\displaystyle \int \cos(x)\,dx=\sin(x)+C} ∫ tan ⁡ ( x ) d x = − ln ⁡ | cos ⁡ ( x ) | + C = ln ⁡ | sec ⁡ ( x ) | + C {\displaystyle \int \tan(x)\,dx=-\ln |\cos(x)|+C=\ln |\sec(x)|+C} ∫ cotan ⁡ ( x ) d x = ln ⁡ | sin ⁡ ( x ) | + C = − ln ⁡ | cosec ⁡ ( x ) | + C {\displaystyle \int \operatorname {cotan} (x)\,dx=\ln |\sin(x)|+C=-\ln |\operatorname {cosec} (x)|+C} == Sinus inteqralları == ∫ sin ⁡ c x d x = − 1 c cos ⁡ c x {\displaystyle \int \sin cx\;dx=-{\frac {1}{c}}\cos cx\,\!} ∫ sin n ⁡ c x d x = − sin n − 1 ⁡ c x cos ⁡ c x n c + n − 1 n ∫ sin n − 2 ⁡ c x d x ( n > 0 ) {\displaystyle \int \sin ^{n}cx\;dx=-{\frac {\sin ^{n-1}cx\cos cx}{nc}}+{\frac {n-1}{n}}\int \sin ^{n-2}cx\;dx\qquad {\mbox{( }}n>0{\mbox{)}}\,\!} ∫ x sin ⁡ c x d x = sin ⁡ c x c 2 − x cos ⁡ c x c {\displaystyle \int x\sin cx\;dx={\frac {\sin cx}{c^{2}}}-{\frac {x\cos cx}{c}}\,\!} ∫ x 2 sin ⁡ c x d x = 2 cos ⁡ c x c 3 + 2 x sin ⁡ c x c 2 − x 2 cos ⁡ c x c {\displaystyle \int x^{2}\sin cx\;dx={\frac {2\cos cx}{c^{3}}}+{\frac {2x\sin cx}{c^{2}}}-{\frac {x^{2}\cos cx}{c}}\,\!} ∫ x 3 sin ⁡ c x d x = − 6 sin ⁡ c x c 4 + 6 x cos ⁡ c x c 3 + 3 x 2 sin ⁡ c x c 2 − x 3 cos ⁡ c x c {\displaystyle \int x^{3}\sin cx\;dx=-{\frac {6\sin cx}{c^{4}}}+{\frac {6x\cos cx}{c^{3}}}+{\frac {3x^{2}\sin cx}{c^{2}}}-{\frac {x^{3}\cos cx}{c}}\,\!} ∫ x 4 sin ⁡ c x d x = − 24 cos ⁡ c x c 5 − 24 x sin ⁡ c x c 4 + 12 x 2 cos ⁡ c x c 3 + 4 x 3 sin ⁡ c x c 2 − x 4 cos ⁡ c x c {\displaystyle \int x^{4}\sin cx\;dx=-{\frac {24\cos cx}{c^{5}}}-{\frac {24x\sin cx}{c^{4}}}+{\frac {12x^{2}\cos cx}{c^{3}}}+{\frac {4x^{3}\sin cx}{c^{2}}}-{\frac {x^{4}\cos cx}{c}}\,\!} ∫ x 5 sin ⁡ c x d x = 120 sin ⁡ c x c 6 − 120 x cos ⁡ c x c 5 − 60 x 2 sin ⁡ c x c 4 + 20 x 3 cos ⁡ c x c 3 + 5 x 4 sin ⁡ c x c 2 − x 5 cos ⁡ c x c {\displaystyle \int x^{5}\sin cx\;dx={\frac {120\sin cx}{c^{6}}}-{\frac {120x\cos cx}{c^{5}}}-{\frac {60x^{2}\sin cx}{c^{4}}}+{\frac {20x^{3}\cos cx}{c^{3}}}+{\frac {5x^{4}\sin cx}{c^{2}}}-{\frac {x^{5}\cos cx}{c}}\,\!} ∫ x n sin ⁡ c x d x = n ! ⋅ sin ⁡ c x [ x n − 1 c 2 ⋅ ( n − 1 ) ! − x n − 3 c 4 ⋅ ( n − 3 ) ! + x n − 5 c 6 ⋅ ( n − 5 ) ! − . . . ] − − n !
Triqonometrik tangens funksiyası
Tərs triqonometrik funksiyalar
Tərs triqonometrik funksiyalar (dairəvi funksiya, arkfunksiya) — triqonometrik funksiyalar tərsinə çevrilə bilən riyazi funksiyalardır. Tərs triqonometrik funksiyalara əsasən altı funksiya daxildir: arksinus ( a r c s i n x {\displaystyle \mathrm {arcsin} \,x} — bu bucağın sinusu x {\displaystyle x} -ə bərabərdir) arkkosinus ( a r c c o s x {\displaystyle \mathrm {arccos} \,x} — bu bucağın kosinusu x {\displaystyle x} -ə bərabərdir) arktangens ( a r c t a n x {\displaystyle \mathrm {arctan} \,x} , bəzi ədəbiyyatlarda a r c t g x {\displaystyle \mathrm {arctg} \,x} ) arkkotangens ( a r c c o t x {\displaystyle \mathrm {arccot} \,x} və ya a r c c o t a n x {\displaystyle \mathrm {arccotan} \,x} , bəzi ədəbiyyatlarda a r c c t g x {\displaystyle \mathrm {arcctg} \,x} ) arksekans ( a r c s e c x {\displaystyle \mathrm {arcsec} \,x} ) arkkosekans ( a r c c s c x {\displaystyle \mathrm {arccsc} \,x} , bəzi ədəbiyyatlarda a r c c o s e c x {\displaystyle \mathrm {arccosec} \,x} ) Triqonometrik funksiyaların adının qarışındakı "arc" sözü ( lat. arcus — ox, qövs, qövsəoxşar xətt) bu funksiyaları tərs triqonometrik funksiyaların adına çevirir. Bu onunla bağlıdır ki, tərs triqonometrik funksiyaların həndəsi qiyməti vahid çevrənin qövsünün uzunluğu ilə əlaqələndirmək olar. Tərs triqonometrik funksiyalar anlayışını Laqranj köməyi ilə Avstriya riyaziyyatçısı Karla Şerfer (alm. Karl Scherffer‎; 1716—1783) daxil etmişdir. == Əsas eyniliklər == arcsin ⁡ x + arccos ⁡ x = π 2 {\displaystyle \arcsin x+\arccos x={\frac {\pi }{2}}} arctan x + arccot x = π 2 {\displaystyle \operatorname {arctan} \,x+\operatorname {arccot} \,x={\frac {\pi }{2}}} == Arksinus funksiyası == Arksinus - m ədədinin x bucağının qiymətinə , radian ifadəsinə deyilir, hansı ki, sin ⁡ x = m , − π 2 ⩽ x ⩽ π 2 , | m | ⩽ 1. {\displaystyle \sin x=m,\,-{\frac {\pi }{2}}\leqslant x\leqslant {\frac {\pi }{2}},\,|m|\leqslant 1.} y = sin ⁡ x {\displaystyle y=\sin x} funksiyası bütün ədəd oxunda kəsilməz və məhduddur. y = arcsin ⁡ x {\displaystyle y=\arcsin x} funksiyası ciddi artandır. sin ⁡ ( arcsin ⁡ x ) = x {\displaystyle \sin(\arcsin x)=x\qquad } − 1 ⩽ x ⩽ 1 , {\displaystyle -1\leqslant x\leqslant 1,} arcsin ⁡ ( sin ⁡ y ) = y {\displaystyle \arcsin(\sin y)=y\qquad } − π 2 ⩽ y ⩽ π 2 , {\displaystyle -{\frac {\pi }{2}}\leqslant y\leqslant {\frac {\pi }{2}},} D ( arcsin ⁡ x ) = [ − 1 ; 1 ] {\displaystyle D(\arcsin x)=[-1;1]\qquad } (təyin oblastı), E ( arcsin ⁡ x ) = [ − π 2 ; π 2 ] {\displaystyle E(\arcsin x)=\left[-{\frac {\pi }{2}};{\frac {\pi }{2}}\right]\qquad } (qiymətlər çoxluğu).
Xərc funksiyası
Xərc funksiyası (ing. cost function, məxaric funksiyası (ing. expenditure function) ilə qarışdırılmamalıdır) mikroiqtisadiyyatda istehsalın xərcini bildilir. Xərc funksiyası xammalın qiymətlərindən və məhsul miqdarından asılıdır.. Ümumi şəkildə c(p1, p2, y) kimi ifadə olunur (burada p1 and p2 xammalın ədəd qiymətləridir, y isə məhsulun miqdarı). Xərc funksiyası və onun təhlili Pol Samuelson (1947) və Ronald Şepard (1953) işlərində təsvir olunub. Xərc funksiyanın ümumi xüsusiyyətləri bunlardır: (1) Qeyri-mənfilik: C(p, y) > 0, əgər p > 0 və y > 0 (2) Dəyişməyən xərc yoxdur: C(p, 0) = 0 (3) y üzrə monotonluq: əgər y* > y, onda C(p, y*) > C(p, y) (4) p üzrə monotonluq: if p* > w, then C(p*, y) > C(p, y) (5) Qiymət üzrə bir dərəcəli homogenlik: C(Aw, y) = AC(w, y) (6) Qabarıqlıq: C(p, y) p üzrə çökükdür. (7) Davamlılıq: C(w, y) p üzrə davamlıdır. (8) Şepard lemması: əgər C(w, y) diferensialı tapıla bilər, onda yeganə vektor x var ki, dC(w, y)/dpi = xi.
Funksiyaların kompozisiyası və ya mürəkkəb funksiya
Fərz edək ki, f {\displaystyle f} funksiyası A {\displaystyle A} çoxluğunu B {\displaystyle B} çoxluğuna çevirir. g {\displaystyle g} funksiyası isə B {\displaystyle B} çoxluğunu C {\displaystyle C} çoxluğuna çevirir. Yəni x ∈ A {\displaystyle x\in A} olduqda f ( x ) ∈ B {\displaystyle f(x)\in B} , y ∈ B {\displaystyle y\in B} olduqda isə g ( y ) ∈ C {\displaystyle g(y)\in C} olur. Beləliklə bu iki funksiyanın ardıcıl tətbiqi ilə A {\displaystyle A} çoxluğunu C {\displaystyle C} çoxluğuna çevrilir. Bu iki funksiyanın ardıcıl tətbiqi nəticəsində A {\displaystyle A} çoxluğunu C {\displaystyle C} çoxluğuna çevirən funksiyaya f {\displaystyle f} və g {\displaystyle g} funksiyalarının kompozisiyası deyilir və g ∘ f = g ( f ( x ) ) {\displaystyle g\circ f=g(f(x))} kimi işarə olunur. h = g ∘ f {\displaystyle h=g\circ f} funksiyasına mürəkkəb funksiya deyilir. Eyni qayda ilə üç və daha artıq funksiyanın kompozisiyası təyin olunur.

Значение слова в других словарях