Поиск по словарям.

Результаты поиска

OBASTAN VİKİ
Aparat funksiyası
Aparat funksiyası – optik cihazların xassəsi; cihazın çıxışındakı kəmiyyətin qurğunun girişindəki həqiqi qiyməti ilə əlaqəsini müəyyən edən funksiya. Aparat funksiyası əsasən, teleskop, mikroskop və spektral cihazların xarakteristikası üçün istifadə edilir. Təsvir yaradan optik cihazın Aparat funksiyası cihazın yaratdığı nöqtəvi şüalanma mənbəyinin təsvirində işıqlanmanın paylanmasını göstərir. Aparat funksiyası obyektin təsvirində işıqlanmanın paylanması ilə elə həmin obyektin parlaqlığının paylanması arasında əlaqəni müəyyən etməyə imkan verir. Spektral cihazlarda Aparat funksiyası monoxromatik şüalanmanın müşahidəsi zamanı cihazın qeyd etdiyi spektrdən ibarətdir. İdeal optik cihaz nöqtəvi mənbəyi nöqtə şəklində təsvir edir və onun Aparat funksiyası bu nöqtədən başqa hər yerdə sıfra bərabər olur. Real cihazlarda isə difraksiya, aberrasiya və s. amillər nəticəsində nöqtəvi mənbəyin təsviri “yayılır” və ləkəşəkli alır. Real vəziyyətlərdə Aparat funksiyasının hesablanması çətin olduğu üçün onu eksperiment üsulu ilə təyin edirlər.
Dirixle funksiyası
Dirixle funksiyası – [ 0 ; 1 ] {\displaystyle [0;1]} parçasında təyin olunmuş, arqumetin rasional qiymətlərində 0 {\displaystyle 0} , arqumentin irrasional qiymətlərində 1 {\displaystyle 1} qiymətini alan funksiya. Dirixle funksiyası [ 0 ; 1 ] {\displaystyle [0;1]} parçasının bütün nöqtələrində kəsilən funksiyadır. Bu funksiyanı alman riyaziyyatçısı Dirixlenin adı ilə bağlıdır. Dirixle funksiyası aşağıdakı kimi də təyin etmək olar: lim m → ∞ ( lim n → ∞ cos 2 n ⁡ ( m ! π x ) ) . {\displaystyle \lim \limits _{m\rightarrow \infty }\left(\lim \limits _{n\rightarrow \infty }\cos ^{2n}(m!\pi x)\right).} == Mənbə == M. Mərdanov, S. Mirzəyev, Ş. Sadıqov Məktəblinin riyaziyyatdan izahlı lüğəti. Bakı 2016, "Radius nəşriyyatı", 296 səh.
Myöbius funksiyası
Ədədlər nəzəriyyəsində əsas yerlədən birini də Myöbius funksiyası tutur. Myöbius funksiyasını μ ( x ) {\displaystyle \mu (x)} kimi işarə edirlər. TƏRİF. Aşağıdakı şərtlər təyin edilən μ ( x ) {\displaystyle \mu (x)} funksiyası Myöbius funksiyası adlanır: 1) μ ( x ) = 1 {\displaystyle \mu (x)=1} ; 2) n > 1 {\displaystyle n>1} və n = p 1 ⋅ p 2 ⋯ p k {\displaystyle n=p_{1}\cdot p_{2}\cdots p_{k}} kanonik ayrılışı üçün μ ( n ) = ( − 1 ) k {\displaystyle \mu (n)=(-1)^{k}} (göründüyü üzrə k {\displaystyle k} ədədi n {\displaystyle n} -in sadə bölənlərinin sayıdır); 3) n {\displaystyle n} natural ədədi p 2 {\displaystyle p^{2}} -na bölünürsə( n ⋮ ¯ p 2 {\displaystyle n{\overline {\vdots }}p^{2}} , p {\displaystyle p} -sadə ədəddir), μ ( n ) = 0 {\displaystyle \mu (n)=0} Misal 1: 1. μ ( 30 ) = μ ( 2 ⋅ 3 ⋅ 5 ) = ( − 1 ) 3 = − 1 ; {\displaystyle \mu (30)=\mu (2\cdot 3\cdot 5)=(-1)^{3}=-1;} μ ( 85 ) = μ ( 5 ⋅ 13 ) = ( − 1 ) 2 = 1 ; {\displaystyle \mu (85)=\mu (5\cdot 13)=(-1)^{2}=1;} μ ( 28 ) = μ ( 2 2 ⋅ 7 ) = 0 ; {\displaystyle \mu (28)=\mu (2^{2}\cdot 7)=0;} μ ( 48 ) = μ ( 2 4 ⋅ 3 ) = 0 ; {\displaystyle \mu (48)=\mu (2^{4}\cdot 3)=0;} μ ( 105 ) = μ ( 3 ⋅ 5 ⋅ 7 ) = ( − 1 ) 3 = − 1 ; {\displaystyle \mu (105)=\mu (3\cdot 5\cdot 7)=(-1)^{3}=-1;} 2. μ ( 1 ) = 1 ; {\displaystyle \mu (1)=1;} μ ( 5 ) = − 1 ; {\displaystyle \mu (5)=-1;} μ ( 9 ) = 0 ; {\displaystyle \mu (9)=0;} μ ( 2 ) = − 1 ; {\displaystyle \mu (2)=-1;} μ ( 6 ) = 1 ; {\displaystyle \mu (6)=1;} μ ( 10 ) = 1 ; {\displaystyle \mu (10)=1;} μ ( 3 ) = − 1 ; {\displaystyle \mu (3)=-1;} μ ( 7 ) = − 1 ; {\displaystyle \mu (7)=-1;} μ ( 11 ) = − 1 ; {\displaystyle \mu (11)=-1;} μ ( 4 ) = 0 ; {\displaystyle \mu (4)=0;} μ ( 8 ) = 0 ; {\displaystyle \mu (8)=0;} μ ( 12 ) = 0 ; {\displaystyle \mu (12)=0;} Myöbius funksiyasının sadə xassələrinə aid olan aşağıdakı teoremlərlə tanış olaq. Teorem 1. Myöbius funksiyası multiplikativ funksiyadır, yəni ( n 1 , n 2 ) = 1 {\displaystyle (n_{1},n_{2})=1} üçün μ ( n 1 ⋅ n 2 ) = μ ( n 1 ) ⋅ μ ( n 2 ) ; {\displaystyle \mu (n_{1}\cdot n_{2})=\mu (n_{1})\cdot \mu (n_{2});} Teorem 2. İxtiyari n {\displaystyle n} natural ədədi ( n > 1 ) {\displaystyle (n>1)} və onun n / d {\displaystyle n/d} natural bölənləri cəmi üçün ∑ n / d μ ( d ) = 0. {\displaystyle \sum \limits _{n/d}\mu (d)=0.} Misal 2: n = 252. {\displaystyle n=252.} n = 252 = 2 2 ⋅ 3 2 ⋅ 7.
Məxaric funksiyası
Məxaric funksiyası (ing. Expenditure function) mikroiqtisadiyyatda istifadə olunan və müəyyən bir fayda əldə etmək üçün (fayda funksiyası və qiymətlər verilmiş halda) minimal pul məbləğini göstərən funksiyadır. Riyazi şəkildə, əgər L məhsulları üzrə üstün tutmanı təsvir edən u {\displaystyle u} fayda funksiyası mövcüddursa, onda xərc funksiyası budur: e ( p , u ∗ ) : R + L × R → R {\displaystyle e(p,u^{*}):{\textbf {R}}_{+}^{L}\times {\textbf {R}}\rightarrow {\textbf {R}}} O, göstərir ki, u ∗ {\displaystyle u^{*}} faydasını hansı pul məbləği ilə almaq mümkündür, əgər qiymətlər p {\displaystyle p} kimi təyin olunub. Bu funksiya aşağıdakı kimi təyin olunur: e ( p , u ∗ ) = min x ∈≥ ( u ∗ ) p ⋅ x {\displaystyle e(p,u^{*})=\min _{x\in \geq (u^{*})}p\cdot x} burada x {\displaystyle x} ≥ ( u ∗ ) = { x ∈ R + L : u ( x ) ≥ u ∗ } {\displaystyle \geq (u^{*})=\{x\in {\textbf {R}}_{+}^{L}:u(x)\geq u^{*}\}} faydası ən azı u ∗ {\displaystyle u^{*}} olan bütün seçimlərdir.
Siqmoid funksiyası
Siqmoid funksiyası — Qrafiki "S" hərfinə bənzəyən riyazi funksiya. Riyazi dillə ifadə etsək, siqmoid funksiyanın təyin oblastı bütün həqiqi ədədlər çoxluğu olub ( x ∈ R {\displaystyle x\in \mathbb {R} } ), törəməsi həmişə sıfırdan böyükdür: f ′ ( x ) > 0 {\displaystyle f'(x)>0} ; yalnız bir əyilmə nöqtəsi var, yəni funksiyanın ikinci tərtib törəməsi yalnız bir dəfə sıfırlanır: ∀ x , ∃ ! f ″ ( x ) = 0 {\displaystyle \forall x,\exists !f''(x)=0} . Gompertz funksiyasını da bu formalı funksiyalara misal göstərmək olar. Gompertz funksiyasının da əyrisi siqmoiddir. Siqmoid funksiyalardan olan loqistik funksiyanın qiymətlər oblastı ( 0 ; 1 ) {\displaystyle (0;1)} aralığıdır. x → − ∞ {\displaystyle x\to -\infty } olduqda funksiyanın qiyməti sıfıra, x → ∞ {\displaystyle x\to \infty } olduqda isə birə yaxınlaşır: S ( t ) = 1 1 + e − t . {\displaystyle S(t)={\frac {1}{1+e^{-t}}}.} Loqistik funksiyadan başqa arktangens( a r c t g {\displaystyle \mathrm {arctg} \,} ), hiperbolik tangens( tanh {\displaystyle \tanh } ), xəta funksiyası( erf {\displaystyle \operatorname {erf} \,} ) da oxşar xassəli qrafikə malik olduğu üçün siqmoid funksiyalardan hesab olunur. Əsasən Süni Neyron Şəbəkələrində neyronların aktivləşdirilməsində istifadə olunur. Həmçinin normal paylanma, statistikada istifadə olunur.
Xərc funksiyası
Xərc funksiyası (ing. cost function, məxaric funksiyası (ing. expenditure function) ilə qarışdırılmamalıdır) mikroiqtisadiyyatda istehsalın xərcini bildilir. Xərc funksiyası xammalın qiymətlərindən və məhsul miqdarından asılıdır.. Ümumi şəkildə c(p1, p2, y) kimi ifadə olunur (burada p1 and p2 xammalın ədəd qiymətləridir, y isə məhsulun miqdarı). Xərc funksiyası və onun təhlili Pol Samuelson (1947) və Ronald Şepard (1953) işlərində təsvir olunub. Xərc funksiyanın ümumi xüsusiyyətləri bunlardır: (1) Qeyri-mənfilik: C(p, y) > 0, əgər p > 0 və y > 0 (2) Dəyişməyən xərc yoxdur: C(p, 0) = 0 (3) y üzrə monotonluq: əgər y* > y, onda C(p, y*) > C(p, y) (4) p üzrə monotonluq: if p* > w, then C(p*, y) > C(p, y) (5) Qiymət üzrə bir dərəcəli homogenlik: C(Aw, y) = AC(w, y) (6) Qabarıqlıq: C(p, y) p üzrə çökükdür. (7) Davamlılıq: C(w, y) p üzrə davamlıdır. (8) Şepard lemması: əgər C(w, y) diferensialı tapıla bilər, onda yeganə vektor x var ki, dC(w, y)/dpi = xi.
Faydalılıq funksiyası
Faydalılıq funksiyası — etibarlı alternativlər toplusunda istehlakçı seçimlərini təmsil etmək üçün istifadə edilə bilən funksiya. Funksiyanın ədədi dəyərləri istehlakçının üstünlük dərəcəsinə uyğun olaraq alternativlər sifariş etməyə kömək edir. Daha böyük dəyər daha yüksək üstünlükə uyğun gəlir. Müasir sıravi faydalılıq nəzəriyyəsində rəqəmlərin özləri əhəmiyyət kəsb etmir — yalnız ondan böyük, kiçik və bərabər olan əlaqələr vacibdir. Hər üstünlük əlaqəsi faydalı funksiya ilə təmsil oluna bilməz. Bununla belə, iqtisadi modellərdə istifadə olunan üstünlüklər üçün belə bir funksiya mövcuddur. Funksiyanın mövcudluğu iqtisadiyyatda optimallaşdırma məsələlərinin həllində riyazi analizdən istifadə etməyə imkan verir. Məsələn, istehlakçının problemini həll edərkən . Faydalı funksiyadan istifadə etmədən belə bir problemin həlli çətinləşir. == Formal tərifi == Üstünlük münasibətinin { ⪰ } {\displaystyle \{\succeq \}} təyin olunduğu X {\displaystyle X} icazə verilən alternativlər toplusu verilsin.
İstehsal funksiyası
İstehsal funksiyası — istehsal dəyərləri (istehsalın miqdarı) və resurs xərcləri, texnologiya səviyyəsi kimi istehsal amilləri arasında iqtisadi və riyazi kəmiyyət əlaqəsidir. Onu izokvantlar toplusu kimi ifadə etmək olar. Məcmu istehsal funksiyası bütövlükdə milli iqtisadiyyatın məhsulunu təsvir edə bilər. İstehsal amillərinin müəyyən vaxtda və ya müxtəlif dövrlərdə məhsulun həcminə təsirinin təhlilindən asılı olaraq istehsal funksiyaları statik P = f ( x 1 , x 2 , . . . , x n ) {\displaystyle P=f(x_{1},x_{2},...,x_{n})} və dinamik P = f ( x 1 ( t ) , . . . , x k ( t ) , .
Dirixlet eta funksiyası
Dirixlet eta funksiyası — Riyaziyyatda η ( s ) = ( 1 − 2 1 − s ) ζ ( s ) {\displaystyle \eta (s)=\left(1-2^{1-s}\right)\zeta (s)} olaraq təyin edilənfunksiya. Burada ζ Rieman zeta funksiyasını göstərməkdədir.
Hiks tələb funksiyası
Mikroiqtisadiyyatda istehlakçının Hiks tələbinə müvafiqliyi ona təyin edilmiş fayda gətirən və xərclərini minimallaşdıran məhsulların dəstəsinə tələbi bildirir. Əgər bu müvafiqlik müəyyən bir funksiyadır, onda ona Hiks tələb funksiyası, və ya əvəzini verən tələb funksiyası deyilir. Funksiya Con Hiks (John Hicks) şərəfinə adlandırılmışdır. Riyazi şəkildə: h ( p , u ¯ ) = arg ⁡ min x ∑ i p i x i {\displaystyle h(p,{\bar {u}})=\arg \min _{x}\sum _{i}p_{i}x_{i}} s u c h t h a t u ( x ) ≥ u ¯ {\displaystyle {\rm {such\ that}}\ \ u(x)\geq {\bar {u}}} Harda ki h(p,u) Hiks tələb funksiyasıdır, və ya tələb olunan məhsul dəstəsidir, p qiymətləri səviyyəsidir, və u ¯ {\displaystyle {\bar {u}}} faydadır. Burda p qiymətlərin vektorudur, və X tələb olunan miqdarların vektorudur. Deməli bütün pixi cəmi X məhsullarına gedən ümumi xərcdir. == Digər funksiyalar ilə əlaqələr == Hiks tələb funksiyaları riyazi hesablarda işlətmək asandır çünki onlar gəlirin olduğunu tələb etmirlər. Əlavə olaraq, minimallaşdırılmış olmalı funksiya x i {\displaystyle x_{i}} üzrə xəttidir, və bu optimizasiya problemini asanlaşdırır. Amma verilmiş p qiymətləri və w {\displaystyle w} gəliri ilə tələbi təsvir edən x ( p , w ) {\displaystyle x(p,w)} Marşal tələb funksiyasını birbaşa müşahidə etmək daha asandır. Hər ikisi bir biri ilə adi şəkildə əlaqədədir: h ( p , u ) = x ( p , e ( p , u ) ) , {\displaystyle h(p,u)=x(p,e(p,u)),\ } Harda e ( p , u ) {\displaystyle e(p,u)} məxaric funksiyasıdır (verilmiş fayda əldə etmək üçün minimal gəliri göstərən funksiya) h ( p , v ( p , w ) ) = x ( p , w ) , {\displaystyle h(p,v(p,w))=x(p,w),\ } Harda v ( p , w ) {\displaystyle v(p,w)} vasitəli fayda funksiyasıdır (verilmiş qiymətlər və müəyyən gəlir ilə əldə edilən faydanı göstərən funksiya).
Marşal tələb funksiyası
Mikroiqtisadiyyatda istifadə olunan Marşal tələb funksiyası (ing. Marshallian demand function) (Alfred Marşal şərəfinə) göstərir ki, istehlakçı hər bir qiymət və var-dövlət vəziyyətində nə qədər alacaq, nəzərə alaraq ki bu qərar faydanın maksimallaşdırılmasının problemini həll edəcək. Marşal tələb funksiyası həm də Valras tələbi (Leon Valrasın şərəfinə) və ya "əvəzini verməyən tələb funksiyası" kimi tanınır, çünki Marşalın ilkin təhlili var-dövlətin effektlərini nəzərə almırdı. Faydanın maksimallaşdırılması probleminə uyğun olaraq, p qiymətlərinə L məhsullar var. w var-dövlətinə malik olan istehlakçı və bir sıra imkanı çatan seçimlər mövcüddur: B ( p , w ) = { x : ⟨ p , x ⟩ ≤ w } {\displaystyle B(p,w)=\{x:\langle p,x\rangle \leq w\}} ,burada, ⟨ p , x ⟩ {\displaystyle \langle p,x\rangle } qiymətlərin daxili məhsul fəzası və məhsulların sayıdır. İstehlakçının faydalılıq düsturu aşağıdakı kimidir: u : R + L → R {\displaystyle u:{\textbf {R}}_{+}^{L}\rightarrow {\textbf {R}}} .İstehlakçının Marşal tələb müvafiqliyi belə təyin olunur: x ∗ ( p , w ) = argmax x ∈ B ( p , w ) ⁡ u ( x ) {\displaystyle x^{*}(p,w)=\operatorname {argmax} _{x\in B(p,w)}u(x)} .Əgər faydanı maksimallaşdıran seçim hər bir qiymət və var-dövlət üçün yeganədirsə, bu Marşal tələb funksiyası adlanır. == Misal == Əgər iki məhsul varsa, onda öz gəlirini həmişə hər bir məhsul üçün yarıya bölən istehlakçı Marşal tələb funksiyasına malikdir. x ( p 1 , p 2 , w ) = ( w 2 p 1 , w 2 p 2 ) . {\displaystyle x(p_{1},p_{2},w)=\left({\frac {w}{2p_{1}}},{\frac {w}{2p_{2}}}\right).} == Həmçinin bax == Hiks tələb funksiyası Faydanın maksimallaşdırılması problemi == İstinadlar == Mas-Colell, Andreu; Whinston, Michael; & Green, Jerry (1995). Microeconomic Theory.
Rieman zeta funksiyası
Rieman zeta funksiyası — riyaziyyatda alman riyaziyyatçı Bernard Rieman tərəfindən 1859-cu ildə tapılmış, müəyyən bir qiymətdən kiçik ədədlər üzərinə aid edilən, ədədlərə aid qanunlarda önəmli yeri olan xüsusi bir funksiya. Riemann zeta funksiyası fərqli formalarda ifadə edilsə də ən geniş yayılmış halı ζ ( s ) = ∑ n = 1 ∞ 1 n s = 1 1 s + 1 2 s + 1 3 s + ⋯ {\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}={\frac {1}{1^{s}}}+{\frac {1}{2^{s}}}+{\frac {1}{3^{s}}}+\cdots \;\;\;\;\;\;\;\!} şəklindədir.
Triqonometrik tangens funksiyası
triqonometrik tangens funksiyası - tan. Əgər A düzbucaqlı üçbucağın bucağıdırsa, onda A bucağının tangensi (tan A, yaxud tg A kimi yazılır) aşağıdakı kimi təyin olunur: tan A = (qarşıdakı tərəfin uzunluğu)/(bitişik tərəfin uzunluğu) Bir çox proqramlaşdırma dilində tan(A) funksiyası tan A qiymətini (A radianla verilir) hesablayır. == Ədəbiyyat == İsmayıl Calallı (Sadıqov), “İnformatika terminlərinin izahlı lüğəti”, 2017, “Bakı” nəşriyyatı, 996 s.
Kobb-Duqlas istehsal funksiyası
Amerikan alimləri Ç.Kobb və P.Duqlasın adları ilə bağlı yaratdıqları «Kobb-Duqlas funksiyası» ekonometrik nailiyyətlərin ən geniş tətbiq məhsullarındandır. ABŞ-nin XX əsrin 20-ci illərində emal sənayesinə hesablanan «Kobb-Duqlas funksiyası» istehsal həcminin istehsalın əsas faktorları əmək və kapitaldan asılılığını ifadə edir. Bu funksiyaya görə istehsal həcmi iki faktorla istifadə edilən istehsal vasitələri kapital və əməyin miqdarı ilə təyin olunur. == Kobb-Duqlas funksiyası == İstehsal funksiyasının ümumi düsturu Y = AF(K,N) şəklindədir. Bununla belə, Kobb-Duqlas kimi spesifik düsturlar da mövcuddur: Y = AKθ N1-θ. Burada (1-θ) və θ uyğun olaraq əmək və kapitalın gəlirdəki xüsusi çəkilərini göstərir. Kobb-Duqlas funksiyası iqtisadiyyatı dəqiq təsvir etdiyinə və riyazi cəhətdən asan təfsir olunduğuna görə iqtisadçılar tərəfindən geniş istifadə edilir. Məsələn, Kobb-Duqlas funksiyasından istifadə etməklə kapitalın marjinal məhsuldarlığını (KMM) aşağıdakı şəkildə ifadə edə bilərik: KMM = θAKθ-1 N1-θ = θA(K/N)-(1-θ) = θY/K Kobb–Duqlas istehsal funksiyası qeyri xəttidir: Y = ALαKβε Ancaq funksiyanın hər iki tərəfini təbii loqarifm götürməklə xətti hala transformasiya etmək mümkündür: lnY = lnA + αlnL + βlnK + lnε Kobb-Duqlas funksiyasının başlıca cəhətləri aşağıdakılardır: Mənfəətin və xərclərin xüsusi çəkisinin dəyişmədiyi, yığımın olmadığı və istehsalın (əmək və kapital) elastikliyinin vahidə bərabər olduğu fərz edilir; İstehsal amillərinin bir-birini əvəz etmələri sıfırla vahid ara­sın­da tərəddüd edir və adətən vahiddən kiçikdir; Qarşılıqlı əvəzet­mələrin hüdudu texniki inkişaf səviyyəsi ilə müəyyən edilir; Əməyin kapital ilə əvəz olunması imkanları nəzəri cəhət-dən sonsuzdur; İstehsal amil­ləri keyfiyyətinin dəyişməsi nəzərə alınmır, yəni, texniki tərəq­qidən sərfnəzər edilir. Buradan da belə bir nəticə çıxarmaq olar ki, fun­ksiya yalnız ekstensiv iqtisadi artım üçün münasibdir. == Tarix == İstehsal funksiyalarının irəli sürülməsi tarixi sənayeləşmə dövrünə təsadüf edir.
Tərcüməçi
Tərcüməçi — Bir dildən başqa dilə tərcümə etməklə məşğul olan adam; mütərcim.
Funksiya
Funksiya (riyaziyyat) —
Maşın tərcüməsi
Maşın tərcüməsi (ing. machine translation, rus. машинный перевод) — lüğətlər və tərcümə qaydaları toplusu əsasında mətnin bir dildən başqa bir dilə avtomatik çevrilməsi texnologiyası. Kompüterlərdən tərcümə üçün istifadə olunması ideyası 1947-ci ildə, ilk kompüterlərin yaranmasından dərhal sonra ABŞ-də irəli sürülüb. Maşın tərcüməsinin (Corctaun eksperimenti) ilk ictimai nümayişi isə 1954-cü ildə olub. Həmin sistem nə qədər primitiv olsa da (250 sözdən ibarət lüğət, 6 qaydadan ibarət qrammatika, bir neçə cümlənin tərcüməsi), eksperiment geniş resonans yaratdı: ADR-də, AFR-də, Bolqarıstanda, Çində, Fransada, İngiltərədə, İtaliyada, SSRİ-də, Yaponiyada bu istiqamətdə tədqiqatlara başlanıldı. Tərcümənin keyfiyyəti ilkin mətnin mövzusundan və üslubundan, eləcə də aralarında tərcümənin aparıldığı dillərin qrammatik, sintaktik və leksik qohumluğundan asılıdır. Bədii mətnlərin maşın tərcüməsinin keyfiyyəti, demək olar ki, həmişə qaneedici olmayıb. Texniki mətnlərdə isə azacıq redaktəyə ehtiyacı olan tərcümələr almaq mümkündür. Fəqət mükəmməl maşın tərcüməsi sisteminin yaradılması yarım əsr bundan öncə olduğu kimi, yenə də arzu olaraq qalır.
Funksiyanın diferensialı
Diferensial funksiyanın xətti artımını təsvir edir. Bu anlayış istiqamətdən asılı olaraq törəmə ilə sıx bağlıdır. Funksiyanın f {\displaystyle f} diferensialı d f {\displaystyle df} , onun x {\displaystyle x} nöqtəsindəki qiyməti d x f {\displaystyle d_{x}f} ilə işarə olunur. Diferensialın sadə şəkildə izahı belədir: Verilmiş f ( x ) {\displaystyle f(x)} funksiyasının dəyişmə tezliyi onun arqumentinin ( x {\displaystyle x} ) dəyişmə tezliyindən asılıdır. Diferensial anlayışı XVII-XVIII əsrlərdə diferensial hesablarının yaranması zamanı daxil edilmişdir. XIX əsrdən başlayaraq analiz A.L.Kauçi və Karl Vayerstrass tərəfindən sərhəd qiymətləri əsasında yenidən işlənərək riyazi cəhətdən daha düzgün qurulmuşdur. Bununla diferensial anlayışı öz ilkin əhəmiyyətini itirir. Hazırda diferensial d x {\displaystyle dx} yalnız məhdud halda tətbiq olunur. == Tərifi == y = f ( x ) {\displaystyle y=f(x)} funksiyası ( a , b ) {\displaystyle (a,b)} intervalında diferensiallanandır. Δ y = f ′ ( x ) Δ x + ( Δ x ) Δ x {\displaystyle \Delta y=f'(x)\Delta x+(\Delta x)\Delta x} Diferensiallanan y = f ( x ) {\displaystyle y=f(x)} funksiyasının x {\displaystyle x} nöqtəsindəki artımının baş hissəsinə, yəni Δ x {\displaystyle \Delta x} -dən xətti asılı olan f ′ ( x ) Δ x {\displaystyle f'(x)\Delta x} ifadəsinə onun x {\displaystyle x} nöqtəsində diferensialı deyilir.
Funksiyanın qrafiki
Riyaziyyatda bir f funksiyanın qrafiki, bütün ( x, f ( x)) sıralı cütlərinin meydana gətirdiyi bir qrafikdir. Elm, mühəndislik, texnologiya, maliyyə və digər sahələrdə qrafiklər bir çox məqsəd üçün istifadə edilir. == Nümunələr == === Bir dəyişənli funksiyalar === Bir dəyişənli funksiyanın qrafiki belədir: f ( x ) = { a , x = 1 i c i n d , x = 2 i c i n c , x = 3 i c i n . {\displaystyle f(x)=\left\{{\begin{matrix}a,&{\mbox{ }}x=1{\mbox{ }}icin\\d,&{\mbox{ }}x=2{\mbox{ }}icin\\c,&{\mbox{ }}x=3{\mbox{ }}icin.\end{matrix}}\right.} Buradakı sıralı cütlər belə ifadə edilir: {(1, a), (2, d), (3, c)} Həqiqi ədələr olan üçüncü dərəcədən bir çoxhədliin qrafiki belədir: f ( x ) = x 3 − 9 x {\displaystyle f(x)={{x^{3}}-9x}\!\ } Bunun sıralı cütləri belə ifadə edilir: {( X, x 3 -9 x): x, bir həqiqi ədəddir}.Bu çoxluq əgər karteziyan koordinant sistemində çəkilərsə, yandakı şəkildəki kimi bir əyri olar. === İki dəyişənli funksiyalar === Bütün həqiqi ədədlər triqonometrik funksiyanın qrafiki belədir: F ( x, y) = sin ( x 2 ) · cos ( y 2 )Bunun verilənlər: {( X, y, sin ( x 2 ) · cos (' 'y 2 )): x və y, həqiqi ədədlərdir. Bu çoxluq əgər karteziyan koordinant sistemi ndə çəkilərsə, yandakı şəkildəki kimi bir səth olar. İki ölçülü (X, Y) karteziyan koordinat sistemindəki bu çoxluqda, üçüncü koordinat (Z) ilə birlikdə görmək üçün rəng istifadə edilər. === Normalın qrafiki === x = x 1 , … , x n {\displaystyle x=x_{1},\dotsc ,x_{n}} formasında n dəyişənli bir f funksiyasının normalinin qrafiki belədir: ( ∇ f , − 1 ) {\displaystyle (\nabla f,-1)} (Bir sabit ilə hasili). Bunu görmək üçün, g ( x , z ) = f ( x ) − z {\displaystyle g(x,z)=f(x)-z} funksiyasının bir kümedeki qrafikini göz qarşısında saxlamaq və çoxluqda ∇ g {\displaystyle \nabla g} normalından istifadə etmək lazımdır.
Hümmət fraksiyası
Hümmət fraksiyası — Azərbaycan Xalq Cümhuriyyəti Parlamentində Hümmət Partiyasını (menşeviklər) təmsil edən fraksiya. == Haqqında == Hümmət Fraksiyasına Səməd ağa Ağamalıoğlu başçılıq edirdi. Hümmət Partiyasını Azərbaycan Xalq Cümhuriyyəti Parlamentində əvvəl 5 deputat, daha sonra isə 8 deputat təmsil edirdi. Fraksiyanın üzvü Əkbər ağa Şeyxülislamov Paris Sülh Konfransında iştirak edən nümayəndə heyətinə daxil edilmişdi. Fraksiyasının üzvləri Parlamentin maliyyə-büdcə, təsərrüfat, aqrar, sorğu komissiyalarının tərkibinə daxil edilmişdilər. Fraksiyanın üzvü Qasım bəy Camalbəyov Müəssislər Məclisinin çağırılması üzrə Mərkəzi Komissiyanın üzvü idi. Azərbaycan Xalq Cümhuriyyəti Parlamenti açılarkən, Hümmət fraksiyası tərəfindən Əkbər ağa Şeyxülislamov çıxış edərək, Parlament üzvlərini partiyanın bəyannaməsi ilə tanış etmişdi. Bəyannamədə fəhlə hüququ, qadın azadlığı, torpaq məsələsi kəskin şəkildə qoyulurdu. Fraksiya hökumət qarşısında konkret tələblər irəli sürürdü. Fraksiya rəhbəri Səməd ağa Ağamalıoğlunun başçılıq etdiyi aqrar komissiyanın yaradılması da təsadüfi deyildi.
İttihad fraksiyası
Əhrar fraksiyası
Parlament fraksiyası
Parlament fraksiyası və ya parlament qrupu — parlamentdə deputatlar qrupu. Fraksiyaya bir siyasi partiyadan və ya bir neçə partiyadan olan deputatlar daxil ola bilər. Deputatlar fraksiyada birləşərək ortaq siyasi xətt yürüdürlər. Hər bir ölkədə parlament fraksiyalarının yaradılması qaydaları fərqlidir. Bu, adətən parlament haqqında xüsusi qanun və parlament reqlamenti ilə tənzimlənir.
Artan funksiya
Teorem.
Adil Əfəndiyev (tərcüməçi)
Adil Əfəndiyev və ya Adil Nəcdət (1907 – 9 fevral 1973, Bakı) — Axısqa türkü, alim, Bakı Sovetinin II, IV, V, VI, VIII, IX çağırış deputatı. == Həyatı == Adil Ələddin oğlu Əfəndiyev 1929-cu ildə Azərbaycan Dövlət Universitetinin şərq fakültəsinin dilçilik şöbəsini bitirmişdir. Əmək fəalyyətinə hələ tələbə ikən başlamışdır. 1924-cü ildə "Kəndli qəzetəsi"nin katibi, 1925–1939-cu illərdə Azərbaycan Dövlət Nəşriyyatı – "Azərnəşr"də orfoqraf, tərcüməçi, redaktor, şöbə müdiri vəzifələrində çalışmışdır. 1939–1953-cü ildə Azərbaycan Radio Verilişləri Komitəsində baş redaktor, sədrin birinci müavini və sədr vəzifəsində çalışmışdır. 1954–1964-cü illərdə Azərbaycan Dövlət Nəşriyyatı-"Azərnəşr"in müdiri vəzifəsində çalışmışdır. 1964–1972-ci illərdə Azərbaycan SSR Dövlət Mətbuat Komitəsi sədrinin birinci müavini olmuşdur. 1972–1973-cü illərdə Azərbaycan KP MK yanında Partiya Tarixi İnstitutunda tərcümə bölməsinin müdiri olmuşdur. Nizami Yubiley Komitəsinin məsul katib və sədr müavini, terminoloji komitənin, toponimika komissiyasının, Azərbaycan Sovet Ensiklopediyası baş redaksiyasının üzvü olmuşdur. Bir çox bədii, siyasi əsərlərin, o cümlədən K. Marks, F. Engels, V. İ. Lenin, Ö. Xəyyam, İ. S. Turgenyev, L. Tolstoy, M. Tven, C. Oldric və başqalarının əsərlərnin, tarix və coğrafiya dərsliklərinin Azərbaycan dilinə tərcüməçisi və tərcümələrinin redaktoru olmuşdur.
Cəlil Xəlilov (tərcüməçi)
Cəlil Əliheydər oğlu Xəlilov (14 mart 1924, Nuxa – 7 dekabr 2004, Bakı) — Azərbaycanlı tərcüməçi-filoloq; SSRİ Jurnalistlər İttifaqının üzvü (1957), Azərbaycan SSR Əməkdar mədəniyyət işçisi (1969), AMEA Terminologiya Komitəsinin üzvü. == Həyat və fəaliyyəti == Cəlil Xəlilov 14 mart 1924-cü il tarixində Nuxa şəhərində anadan olub. 1940-cı ildə Mirzə Fətəli Axundov adına Nuxa şəhər 2 nömrəli tam orta məktəbi bitirmişdir. Elə həmin ildə də Şəki şəhərində müəllimlər institutunun ikiillik fizika-riyaziyyat fakültəsinə daxil olmuşdur. 1942-1946-cı illərdə ordu sıralarında xidmət etdikdən sonra Şəki şəhərinə qayıdıb M.Qorki adına 10 nömrəli orta məktəbdə rus dili müəllimi işləmişdir. 1948-ci ildə Azərbaycan Dövlət Universitetinin rus dili və ədəbiyyatı fakültəsinə daxil olmuşdur. Tərcüməçi kimi əmək fəaliyyətini 1950-ci ildə Azərbaycan Teleqraf Agentliyində (AzərTA) başlamışdır. Müxtəlif illərdə həmin agentliydə tərcüməçi-redaktor və direktor müavini vəzifələrində çalışmışdır. 1974-1986-cı illər ərzində "Kommunist" qəzeti redaksiyasında tərcümə şöbəsinin müdiri vəzifəsində çalışmışdır, 1987-ci ildə isə MK yanında Partiya tarixi institunda partiya tarixi bölməsinin baş elmi işçisi vəzifəsində çalışmışdır. Təqaüdə cıxdıqdan sonra, müasir Azərbaycanda 1992-1993-cü illərdə Dövlət Statistika Komitəsində ümumi şöbənin baş müfəttiş-tərcüməçi vəzifəsində, 1993-2000-ci illərdə isə Azərbaycan Beynəlxalq Bankında protokol şöbəsinin aparıcı və baş mütəxəssis-tərcüməçisi vəzifələrini yerinə yetirmişdir.
Tərcümeyi-hal
Bioqrafiya və ya tərcümeyi-hal — bir şəxsin doğum tarixi, atasının, anasının kimliyi, aldığı təhsili, ümumi həyatının mənbələri haqqında konkret məlumatlardan ibarət olan adətən qısa mətn.
Tərcümeyi hal
Bioqrafiya və ya tərcümeyi-hal — bir şəxsin doğum tarixi, atasının, anasının kimliyi, aldığı təhsili, ümumi həyatının mənbələri haqqında konkret məlumatlardan ibarət olan adətən qısa mətn.