Поиск по словарям.

Результаты поиска

OBASTAN VİKİ
Rabitə
Rabitə Texniki vasitələrin köməyi ilə müəyyən məsafədə əlaqə saxlayan idarələr sistemi
Sabit
Sabit — Daimi mənasını bildirən şəxs adı.
Aperi sabiti
Aperi sabiti — riyaziyyatın sirli ədədlərindən biridir. Elektrodinamika sahəsində elektronun giromaqnetik əmsalının ikinci və üçüncü dərəcə hədləri ilə bərabər, bir çox fiziki məsələlərdə qarşılaşılan bu sabit, məxrəcində eksponensial funksiya mövcud olan inteqralların həllində də istifadə olunur. Debye modelinin ikiölçülü fəza üçün hesablanması buna misal olaraq göstərilə bilər. Sabit aşağıdakı kimi təyin edilir: ζ ( 3 ) = ∑ k = 1 ∞ 1 k 3 = 1 + 1 2 3 + 1 3 3 + 1 4 3 + ⋯ {\displaystyle \zeta (3)=\sum _{k=1}^{\infty }{\frac {1}{k^{3}}}=1+{\frac {1}{2^{3}}}+{\frac {1}{3^{3}}}+{\frac {1}{4^{3}}}+\cdots } Burada ζ, Rieman zeta funksiyasını ifadə edir.
Avoqadro sabiti
Avoqadro sabiti (Avoqadro ədədi) — fiziki kəmiyyət olaraq maddə miqdarı bir mol olan maddədə struktur vahidlərin (atom, molekul, ion və ya digər zərrəciklərin) sayını göstərir. Avoqadro sabiti təmiz 12C izotopundan ibarət 0.012 k q {\displaystyle 0.012\,\mathrm {kq} } karbondakı atomların sayı ilə təyin olunur və adətən NA, bəzən isə L kimi işarə edirlər. Yuxarıdakı tərifdən istifadə edib Avoqadro sabitini karbonun 12C izotopunun m 0 12 C {\displaystyle m_{0{^{12}\mathrm {C} }}} kütləsi ilə ifadəsini yazmaq olar: N A = 0.012 k q ⋅ m o l − 1 m 0 12 C {\displaystyle N_{\mathrm {A} }={\frac {0.012\,\mathrm {kq} {\cdot }\mathrm {mol} ^{-1}}{m_{0{^{12}\mathrm {C} }}}}} BS-də Avoqadro sabitinin vahidi m o l − 1 {\displaystyle \mathrm {mol} ^{-1}} kimidir ( [ N A ] = 1 m o l ) {\displaystyle \left(\left[N_{\mathrm {A} }\right]={\frac {1}{\mathrm {mol} }}\right)} . Avoqadro ədədinin 2014-cü ildə CODATA tərəfindən tövsiyə olunan qiyməti aşağıdakı kimidir : N A = 6.022140857 ( 74 ) ⋅ 10 23 mol − 1 {\displaystyle N_{\text{A}}=6.022140857(74){\cdot }10^{23}\,{\text{mol}}^{-1}} .Dairəvi mötərizələrdəki ədəd kəmiyyətin qiymətinin axırıncı rəqəmlərdəki standart xətasını göstərir. Avoqadro sabiti fundamental fiziki sabitlərdən biridir və bir çox digər fiziki sabitlərin (Boltsman sabiti, Faradey sabiti və s.) təyin olunması üçün mühüm əhəmiyyət kəsb edir. Avoqadro sabitinin təyin olunmasının bir-brindən asılı olmayan müxtəlif üsulları mövcuddur. Bu kəmiyyətin təyin olunmasının ən yaxşı eksperimental üsulu mollarının sayı məlum olan mürəkkəb maddənin elektrolitik ayrılması üçün lazım olan elektrik yükünün ölçülməsi və elektronun yükünün ölçülməsinə əsaslanır. == Elmdə ümumi rolu == Avoqadro sabiti təbiətdə müşahidə olunan makroskopik və mikroskopik (atomik miqyasda) hadisələr arasında miqyas faktorudur. Beləliklə, bu sabit digər fiziki sabitlər arasında qarşılıqlı əlaqəni təmin edir. Məsələn, Avoqadro sabiti R {\displaystyle R} universal qaz sabiti ilə k B {\displaystyle k_{\text{B}}} Bolsman sabiti arasında aşağıdakı əlaqə yaradır: R = k B N A = 8.3144598 ( 48 ) C m o l ⋅ K {\displaystyle R=k_{\mathrm {B} }N_{\text{A}}=8.3144598(48)\,{\frac {\mathrm {C} }{\mathrm {mol} {\cdot }\mathrm {K} }}} Digər nümunə kimi Avoqadro sabitinin F Faradey sabiti ilə e elementar yük arasında yaratdığı əlaqəni də göstərmək olar: F = N A e = 96485.33289 ( 59 ) K m o l {\displaystyle F=N_{\mathrm {A} }e=96485.33289(59)\,{\frac {\mathrm {K} }{\mathrm {mol} }}} Avoqadro sabiti həmçinin atom kütlə vahidini (a.k.v.) BS-də kütlə vahidi olan kiloqramla əlaqələndirir: 1 a.k.v.
Bolsman sabiti
Boltsman sabiti ( k B {\displaystyle k_{\mathrm {B} }} və ya k {\displaystyle k} ) - fundemental fiziki sabitlərdən biri olub, enerji ilə temperatur arasında əlaqə yaradır. Boltsman sabiti R {\displaystyle R} universal qaz sabitinin N A {\displaystyle N_{\mathrm {A} }} Avoqadro sabitinə olan nisbətinə bərabərdir: k B = R N A . {\displaystyle k_{\mathrm {B} }={\frac {R}{N_{\mathrm {A} }}}.} Bu sabitin adı, onun əsas rol oynadığı statistik fizikaya böyük töhfə verən Avstriya fiziki Lüdviq Bolsmanın şərəfinə qoyulmuşdur. Boltsman sabiti, entropiyada olduğu kimi, enerjinin temperatura nisbətinə bərabər olan ölçüyə malikdirr ( [ k B ] = C K ) {\displaystyle \left(\left[k_{\mathrm {B} }\right]={\frac {\mathrm {C} }{\mathrm {K} }}\right)} . BS-də Bollstman sabitininin təcrübi qiyməti aşağıdakı kimidir: k B = 1 . 380 648 52 ( 79 ) × 10 − 23 C K {\displaystyle k_{\mathrm {B} }=1{.}380\,648\,52(79)\times 10^{-23}{\frac {\mathrm {C} }{\mathrm {K} }}} .Dairəvi mötərizələrdəki ədəd kəmiyyətin qiymətinin axırıncı rəqəmlərdəki standart xətasını göstərir. == Makroskopik fizika ilə mikroskopik fizika arasında körpü == k B {\displaystyle k_{\mathrm {B} }} Boltsman sabiti makroskopik və mikroskopik fizika arasında körpüdür. Makroskopik ideal qaz qanununda deyilir ki, ideal qaz üçün p {\displaystyle p} təzyiqi ilə V {\displaystyle V} həcminin hasili ν {\displaystyle \nu } maddə miqdarının T {\displaystyle T} mütləq temperatura olan hasili ilə mütənasibdir: p V = ν R T , {\displaystyle pV=\nu {RT},} burada R {\displaystyle R} qaz sabitidir( R = 8.3144598 ( 48 ) {\displaystyle R=8.3144598(48)\,} C⋅K−1⋅mol−1). Bu qanunda ν = N N A {\displaystyle \nu ={\frac {N}{N_{\mathrm {A} }}}} və R = k N A {\displaystyle R=kN_{\mathrm {A} }} ifadələrindən istifadə etməklə Boltsman sabitinin daxil olduğu ideal qaz qanunun şəkilini aşağıdakı kimi yazmaq olar: p V = N k T , {\displaystyle pV=NkT,} burada N {\displaystyle N} qazdakı molekulların sayı, N A {\displaystyle N_{\mathrm {A} }} isə Avoqadro sabitidir. == Enerji ilə temperatur arasında əlaqə == T {\displaystyle T} mütləq temperatura malik bircins ideal qazda hər bir irəliləmə hərəkətinin sərbəstlik dərəcəsinə düşən enerji, Maksvel paylanmasına görə, k T 2 {\displaystyle {\frac {kT}{2}}} ifadəsinə bərabərdir.
Boltsman sabiti
Boltsman sabiti ( k B {\displaystyle k_{\mathrm {B} }} və ya k {\displaystyle k} ) - fundemental fiziki sabitlərdən biri olub, enerji ilə temperatur arasında əlaqə yaradır. Boltsman sabiti R {\displaystyle R} universal qaz sabitinin N A {\displaystyle N_{\mathrm {A} }} Avoqadro sabitinə olan nisbətinə bərabərdir: k B = R N A . {\displaystyle k_{\mathrm {B} }={\frac {R}{N_{\mathrm {A} }}}.} Bu sabitin adı, onun əsas rol oynadığı statistik fizikaya böyük töhfə verən Avstriya fiziki Lüdviq Bolsmanın şərəfinə qoyulmuşdur. Boltsman sabiti, entropiyada olduğu kimi, enerjinin temperatura nisbətinə bərabər olan ölçüyə malikdirr ( [ k B ] = C K ) {\displaystyle \left(\left[k_{\mathrm {B} }\right]={\frac {\mathrm {C} }{\mathrm {K} }}\right)} . BS-də Bollstman sabitininin təcrübi qiyməti aşağıdakı kimidir: k B = 1 . 380 648 52 ( 79 ) × 10 − 23 C K {\displaystyle k_{\mathrm {B} }=1{.}380\,648\,52(79)\times 10^{-23}{\frac {\mathrm {C} }{\mathrm {K} }}} .Dairəvi mötərizələrdəki ədəd kəmiyyətin qiymətinin axırıncı rəqəmlərdəki standart xətasını göstərir. == Makroskopik fizika ilə mikroskopik fizika arasında körpü == k B {\displaystyle k_{\mathrm {B} }} Boltsman sabiti makroskopik və mikroskopik fizika arasında körpüdür. Makroskopik ideal qaz qanununda deyilir ki, ideal qaz üçün p {\displaystyle p} təzyiqi ilə V {\displaystyle V} həcminin hasili ν {\displaystyle \nu } maddə miqdarının T {\displaystyle T} mütləq temperatura olan hasili ilə mütənasibdir: p V = ν R T , {\displaystyle pV=\nu {RT},} burada R {\displaystyle R} qaz sabitidir( R = 8.3144598 ( 48 ) {\displaystyle R=8.3144598(48)\,} C⋅K−1⋅mol−1). Bu qanunda ν = N N A {\displaystyle \nu ={\frac {N}{N_{\mathrm {A} }}}} və R = k N A {\displaystyle R=kN_{\mathrm {A} }} ifadələrindən istifadə etməklə Boltsman sabitinin daxil olduğu ideal qaz qanunun şəkilini aşağıdakı kimi yazmaq olar: p V = N k T , {\displaystyle pV=NkT,} burada N {\displaystyle N} qazdakı molekulların sayı, N A {\displaystyle N_{\mathrm {A} }} isə Avoqadro sabitidir. == Enerji ilə temperatur arasında əlaqə == T {\displaystyle T} mütləq temperatura malik bircins ideal qazda hər bir irəliləmə hərəkətinin sərbəstlik dərəcəsinə düşən enerji, Maksvel paylanmasına görə, k T 2 {\displaystyle {\frac {kT}{2}}} ifadəsinə bərabərdir.
Faradey sabiti
Faraday sabiti fizika və kimyada, bir mol elektronun malik olduğu elektrik yükü olaraq tanınır. Bu ad, İngilis elm adamı Michael Faradayın adına ithaf edilərək verilmişdir. Elektrolit sistemlərdə, elektrot səthində cəmlənmiş kimyəvi maddə miqdarını müəyyənləşdirmək üçün istifadə olunur. Nişanı F olub; F = N A ⋅ q = 96485 C / m o l {\displaystyle F=N_{A}\cdot q=96485\quad C/mol} ,düsturundakı bərəbərlik ilə ifadə edilə bilər. Bu bərabərlikdə NA Avoqadro sabiti (təxminən 6.02 x 1023 mole−1) və q da, bir elektronun yükünün böyüklüyüdür (elektron başına təxminən 1.602 x 10−19 Coulomb). F-in qiyməti birinci olaraq, müəyyən bir müddət ərzində müəyyən bir cərəyanın keçdiyi elektrokimyəvi reaksiyada cəmləşən gümüşün çəkisinə görə müəyyən edilmişdir. Bu qiymət Avoqadro sabitini hesablamaq üçün istifadə edilmişdir. F və dolayı yol ilə NA-nı daha dəqiq formada müəyyən etməyə yönəldilmiş elmi tədqiqatlar hal-hazırda da davam etdirilir.
Habbl sabiti
Habbl sabiti - sürət artmasının məsafə artımına nisbətini ifadə edir. Onun astronomik mənası, sürət ilə məsafənin mütənasibliyinin bütün qalaktikalar üçün eyni olmasıdır. == Qiyməti == Hazırda Habbl sabiti 1 000 000 işıq ili üçün 23 k m / ( s a n ⋅ m i l y o n i . i ) {\displaystyle 23km/(san\cdot milyoni.i)} İşıq ili - işıq sürətinin bir ildə qət etdiyi yoldur: 1 i . i = 9 , 46 ⋅ 10 12 k m {\displaystyle 1i.i=9,46\cdot 10^{12}km} == İstifadə olunduğu yerlər == Habbl sabiti aşağıdakı hesablamalarda istifadə olunur. Habbl sabitinin qiyməti təqribi də olsa, Kainatın yaşını müəyyən etməyə imkan verir. Bunun üçün milyon işıq ilini Habbl sabitinə bölünməsi kifayət edir. === Habbl qanunu === Habbl qanununa əsasən iki qalaktikanın bir-birinə nəzərən uzaqlaşma sürətinin təyini üçün Habbl sabiti istifadə edilir. === Kainatın yaşının hesablanması === Habbl sabitinin qiyməti təqribi də olsa, Kainatın yaşını müəyyən etməyə imkan verir. Bunun üçün milyon işıq ilini Habbl sabitinə bölünməsi kifayət edir.
Kimyəvi rabitə
Kimyəvi rabitə — molekullarda və onlar arasında əlaqə yaradan qüvvələr toplusu. Kimyəvi rabitə- maddənin xassəsi onun kimyəvi tərkibi, molekulundakı atomların qarışılıqlı təsiri ilə müəyyən edilir. Atomun quruluş nəzəriyyəsi kimyəvi rabitənin təbiətini və molekulun əmələgəlmə mexanizmini izah edir. == Kimyəvi rabitənin növləri == Rabitələrin aşağıdakı növləri var: Hidrogen Kovalent İon Metal == Molekul == Molekul, iki və daha çox atomdan təşkil olunmuş hissəcikdir. Ən sadə molekul iki hidrogen atomundan əmələ gəlmiş hidrogen molekuludur (H2). Molekulda atomları bir-birinə bağlayan qüvvələr cəmi kimyəvi rabitə adlanır. Müəyyən edilmişdir ki, kimyəvi rabitənin yaranması və onun təbiəti, əsasən qarşılıqlı təsirdə olan element atomlarının xarici elektron təbəqələrinin quruluşu ilə əlaqədardır. Rabitənin əmələ gəlməsində iştirak edən elektronlara valent elektronları deyilir. Oktet qaydasına görə, kimyəvi rabitə yaranarkən xarici energetik səviyyələr tamamlanır, əksər hallarda 8 elektronlu oktet… ns2np6, bəzi hallarda (H-, He0, Li+, Be2+, B3+ atom və ionları üçün 2 elektronlu dublet vəziyyəti −1s2 yaranır. == Elementlərin elektromənfiliyi == Birləşmələrdə kimyəvi rabitənin tipini qabaqcadan bilmək üçün elementlərin elektromənfilik anlayışından istifadə edilir.
Mehdi Sabiti
Mehdi Sabiti (1 fevral 1975, Tehran) — İran futbolçusu, qapıçı. Sabiti 2009-cu ildən Təbrizin Traktor Sazi klubuna qoşulmuşdur. O Traktor Sazi klubuna gələndən öncə Məşhədin Əbumüslüm, Zəncanın Şahab və Tehranın Dəmir Yolu futbol klublarında oynamışdır. Abbas Məhəmmədi Traktor Sazi klubunun heyətinə cəlb olunandan sonra Sabiti klubun ikinci qapıçısı oldu.
Naqilsiz rabitə
Simsiz rabitə və ya naqilsiz rabitə — elektrik keçiricisi, fiber-optik və ya digər davamlı idarə olunan mühitdən istifadə etmədən iki və daha çox məntəqə arasında məlumatların ötürülməsi. Ən geniş yayılmış naqilsiz texnologiyalar radioda istifadə edilir. Radio dalğaları ilə nəzərdə tutulan məsafələr qısa da ola bilər, uzaq da. Bunlar uzaq məsafəli radio rabitələrdə minlərlə hətta milyonlarla kilometrə qədər və ya televiziya üçün bir neçə metrə kimi ola bilər. Bu, telsiz (iki istiqamətli radio), mobil telefonlar, cib kompüteri və naqilsiz şəbəkə də daxil olmaqla stasionar, mobil və portativ tətbiqlərin müxtəlif növlərini əhatə edir. Radio naqilsiz texnologiyaların tətbiqinin digər nümunələrinə GPS hissələri, naqilsiz kompüter siçanı, klaviaturası, qulaqlıq, radio qəbuledici, peyk televiziyası , yerüstü televiziya və radiotelefon daxildir. LTE, LTE-Advanced, Wi-Fi, Bluetooth ən geniş yayılmış müasir naqilsiz texnologiyalardan bir neçəsidir. == Tətbiqi == === Mobil telefon === Simsiz texnologiyanın ən məşhur nümunələrindən biri mobil telefondur. 2010-cu ilin sonuna olan məlumata görə, dünya üzrə 6,6 milyarddan çox mobil abunəçi mövcud idi. Bu simsiz telefonlar siqnal qüllələrindən gələn radio dalğalarından istifadə edərək istifadəçilərinə dünyanın bir çox yerindən telefon zəngləri etməyə imkan verir.
Plank sabiti
Plank sabiti kvant mexanikasına aid mühüm sabitdir və elektromaqnit şüalanma kvantının (yəni, fotonun) enerjisi ilə onun tezliyi arasındakı əlaqəni ifadə edir. Plank sabiti h hərfi ilə işarə edilir: h = 6.626 075 × 10 − 34 C ⋅ s {\displaystyle h=6.626\ 075\times 10^{-34}\ \mathrm {C\cdot s} } Plank sabitinin vahidi coul və saniyənin hasilindən ibarətdir – coul•saniyə (ingiliscə joule•seconds). Alman fizik Maks Plank (almanca Max Planck) 1900-cü il 14 dekabrda bu sabiti təqdim etmişdir. Həmin tarix kvant mexanikasının başlanğıcı hesab olunur. Bir çox hallarda Plank sabitinin derivativindən ħ istifadə edilir: ℏ = h 2 π = 1.054 571 × 10 − 34 C ⋅ s {\displaystyle \hbar ={\frac {h}{2\pi }}=1.054\ 571\times 10^{-34}\ \mathrm {C\cdot s} } == Qara cisim şüalanması == Plank sabitinin tarixi qara cisim şüalanmasının öyrənilməsi ilə bağlıdır. “Qara cisim” şərti ifadədir və elə obyektə deyilir ki, o, üzərinə düşən bütün enerjini udur, müəyyən temperatura çatdıqdan sonra aldığı enerjini qaytarır. Qara cisim enerjini qaytararkən o həm də işıqlanır. Bu proses qara cisim şüalanması (ingiliscə blackbody radiation) adlanır. 1859-cu ildə alman fiziki Qustav Kirxhof qara cisimlə apardığı təcrübələrdən belə nəticəyə gəldi ki, qara cisim enerjini qaytaran zaman bu enerji cismin temperaturundan və ayrılan (qaytarılan) enerjinin tezliyindən asılı olur. E = J ( T , ν ) {\displaystyle E=J(T,\nu )} Bu asılılıqda enerjinin (işığın) dalğa təbiəti əsas rol oynayırdı.
Proseslərarası rabitə
Proseslərarası rabitə (ing. interprocess communication (IPC); rus. межпроцессное взаимодействие; türk. süreçler arası iletişim) – bir kompüterdə çoxtapşırıqlı əməliyyat sistemində icra olunan proqramlar arasında, yaxud şəbəkə mühitində icra olunan proqramlar arasında verilənlərin ötürülməsi metodları. IPC’nın ümumi üsulları və vasitələrinə kanallar (PIPES), semaforlar, yaddaşın bölünməsi, növbələr, siqnallar, Clipboard, DDE, OLE aiddir. == Ədəbiyyat == İsmayıl Calallı (Sadıqov), “İnformatika terminlərinin izahlı lüğəti”, 2017, “Bakı” nəşriyyatı, 996 s.
Qaz sabiti
Qaz sabiti ( R ) {\displaystyle \left(R\right)} — fundamental fiziki sabit olub 1 mol ideal qazın hal tənliyinə daxildir: p V μ = R T {\displaystyle pV_{\mu }=RT} . Burada p − {\displaystyle p-} təzyiq, V μ − {\displaystyle V_{\mu }-} 1 m o l {\displaystyle 1\,{\rm {{}mol}}} qazın həcmi (molyar həcm), T − {\displaystyle T-} mütləq temperatur, R {\displaystyle R} isə universal (molyar) qaz sabitidir. Qaz sabiti ədədi qiymətcə maddə miqdarı 1 mol olan ideal qazın sabit təzyiqdə 1 K qızdıqda genişlənərkən gördüyü işə bərabərdir. Qaz sabitinin BS-də ədədi qiyməti aşağıdaakı kimidir: R = 8.3144598 ( 48 ) C m o l ⋅ K {\displaystyle R=8.3144598(48){\frac {C}{\rm {{mol}\cdot {\rm {K}}}}}} .Dairəvi mötərizələrdəki ədəd kəmiyyətin qiymətinin axırıncı rəqəmlərdəki standart xətasını göstərir. == Qaz sabiti ilə Boltsman sabiti arasında əlaqə == R {\displaystyle R} universal (molyar) qaz sabiti k B {\displaystyle k_{\rm {B}}} (çox vaxt k {\displaystyle k} kimi işarə edilir) Boltsman sabiti ilə N A {\displaystyle N_{\rm {A}}} Avoqadro sabitinin hasilinə bərabərdir: R = k N A . {\displaystyle R=kN_{\rm {A}}.} R {\displaystyle R} universal (molyar) qaz sabitinin maddənin M {\displaystyle M} molyar kütləsinə nisbətinə xüsusi qaz sabiti deyilir və B {\displaystyle B} kimi işarə edilir ( [ B ] = C k q ⋅ K ) {\displaystyle \left([B]={\frac {\rm {C}}{\rm {kq\cdot K}}}\right)} : B = R M .
Qazaxıstanda rabitə
Məlumat dünyanın CIA Kataloqundan götürülmüşdür (20 mart 2011-ci il) : Telefonlar — əsas xətlər: 4.928 milyon (2011) Telefonlar — cib telefonları: 14.995 milyon (2009) Telefonun ölkə kodu: +7 Telefon sistemi: Ölkədaxili: Quru xətləri, radiorele rabitəsi və peyk rabitəsi vasitəsi ilə şəhərlər arasında. Sabit əlaqələrin sayı tədricən artır və hər 100 nəfərə təxminən 40 nəfərdir. Mobil (mobil) əlaqələr sürətlə böyüyür və onların sayı 100 nəfərə 88 nəfərdir. Beynəlxalq: Digər postsovet respublikaları və Çin ilə beynəlxalq rabitə quru xətləri və mikrodalğalı radiorele rabitəsi vasitəsi ilə həyata keçirilir. Digər ölkələrlə peyk və Trans-Asiya-Avropa (TAE) fiber optik kabel vasitəsilə. Peyk yerüstü stansiyaları: Intelsat. Qazaxıstan peykləri — KazSAT-1, KazSAT-2, KazSAT-3, KazSAT-4. Radio yayım stansiyaları: AM - 60, FM - 24, qısa dalğa - 14 (2011) Radio: 11.47 milyon (2011) Televiziyalar: 26 (üstəgəl 14 təkrarlayıcı) (2011) İnternet provayderləri: 18 (öz beynəlxalq kanalları ilə) (2011) İnternet aparıcıları: 180 217 (2011) İnternet istifadəçiləri: 400.000 (2005) 1,247,000 (2006); 5.300.000 (2011) İnternet domeni :.kz, .қаз == Mobil əlaqə == Qazaxıstanda mobil rabitə GSM (900, 1800) və UMTS (900, 2100) formatında həyata keçirilir. 2012-ci ildə mobil rabitənin nüfuz nisbəti 120% təşkil etmişdir. 2015-ci ildə Qazaxıstanda mobil rabitə səviyyəsi 185% -ə çatdı - ölkədə 31 milyondan çox SİM kart qeydiyyata alındı.
Rabitə, kommunikasiya
Rabitə Bakı
Rabitə Bakı — Azərbaycanın Bakı şəhərini təmsil edən qadınlardan ibarət voleybol klubu idi. 2004-cü ildən yaranan komanda 2008-ci ildən etibarən Voleybol üzrə Azərbaycan Superliqasında mübarizə aparırdı. Komanda tez-tez heyətini dəyişdirdiyindən hər mövsüm Rabitədə fəqli-fərqli voleybolçuları görmək olardı. Yerli voleybolçulara üstünlük verməyən klubda dünyanın hər yerindən ən tanınmış simaları görmək mümkün idi. Komandanın əvvəlki heyətinə baxdıqda onlarla dünya çempionu, olimpiya çempionu və mükafatçıları görmək mümkündür. 8 qat Azərbaycan çempionu, 2011-ci və 2013-cü illərin Çempionlar Liqasının finalçısı, 2014-cü ildə isə üçüncüsü, 2011-ci il klublararası Dünya Çempionatının qalibi və 2012-ci ildə isə finalçı olub. == Tarixi == 2001-ci ilin 14 dekabrında əsası qoyulan Rabitə Voleybol Klubunun Rabitə Bakı komandası 2004-cü ildə yaradılmışdı. Klub ölkə çempionatında ilk gümüş medalını 2005-ci ildə qazanıb. 2007-ci ildə ilk dəfə qızıl medalı qazanıb. Həmin ildən etibarən komanda hər il ölkə çempionatının qalibi olub.
Rabitə protokolları
Verilənlərin ötürülməsi protokolları — müxtəlif proqramlar arasında məlumatların mübadiləsi tanımlayan bir interfeys logic level müqavilələr toplusu. Bu razılaşmalar yer, avadanlıq, ayrılır proqram qarşılıqlı mesaj və səhv rəftar göndərmək üçün tutarlı bir yol müəyyən və ya interfeys ilə bağlıdır. Standartlaşdırılmış ötürülməsi protokolu da xüsusi hardware platforma və istehsalçının (məsələn, USB, Bluetooth) bağlı deyil interfeys inkişafı (artıq fiziki səviyyədə), imkan verir. == Şəbəkə protokolları == Şəbəkə Protokol - iki və ya daha arasında əlaqə və mübadilə məlumatlar şəbəkə cihazları daxil imkan verən qaydalar və hərəkətlərdən (tədbirlər ardıcıllıqla) bir sıra. Şəbəkə protokollarının 4 siyahısı Link Layer Network Layer Nəqliyyat Layer Session Layer Application LayerIETF müəyyən İnternet yeni protokollar və digər protokollar - IEEE və ISO. İTU-T telekommunikasiya protokolları və formatlar ilə məşğul olur. TCP / IP - İnternet üçün əsas olan iki protokol. Protokol TCP (Transmission Control Protocol) paketlər və üzrə ötürülən informasiya ayırır. Protokol IP (Internet Protokol) Bütün paketləri köçürülür. Sonrakı bütün hissələri qəbul olub-olmadığını yoxlamaq üçün TCP protokolu istifadə edərək. TCP bütün hissəsinin sonra alınması üçün onların təşkil və birlikdə toplanır.
Radio rabitə
Radiorabitə — XX əsrin əvvəllərindən istifadəyə verilmiş bir telekommunikasiya sistemidir. Bu sistem elektromaqnit dalğaları hesbına əmələ gəlir və verilənləri almaq və ötürmək qabilliyətinə malikdir.Onu elmə Qulyelmo Markoni gətirmişdir. Sistem inkişaf etdikcə onu hətta qitələrarası teleqraf rabitəsində də istifadə edirlər. == Yaranma yolları == Elekromaqnit rəqsləri almaq üçün rəqs koturundan istifadə olunur.Rəqs konturunda elektrik sahəsi kondensatorun köynəkləri arasında ,maqnit sahəsi isə sarğac daxilində və onun ətrafında mövcud olur. Bu cür kontur fəzaya elektrommaqnit dalğaları şüalandırmır.Ona görə belə kontur qapalı rəqs konturu adlanır.
Sabirə Əliyeva
Səbirə Əliyeva (25 sentyabr 1995, Bakı) — 2009–2021-ci illərdə Azərbaycanı təmsil edən qadın güləşçi. Səbirə Əliyeva 2018-ci il Avropa Çempionatının bürünc medalına sahib olub. == Həyatı == Səbirə Əliyeva 1995-ci il sentyabrın 25-də Xəzər rayonunun Buzovna qəsəbəsində anadan olub. 2009-cu ildən güləşlə məşğul olur. Şəxsi məşqçisi Hicran Şərifovdur. == Karyerası == Səbirə Əliyevanın birinci beynəlxalq turniri 2013-cü ilin fevralında Sofiya şəhərində (Bolqarıstan) baş tutan D. Kolov — N. Petrov beynəlxalq turniri oldu. Səbirə Əliyeva həmin turniri beşinci pillədə başa vurdu. Daha sonra Belarusda baş tutan A. Medved beynəlxalq turnirinin bürünc medalına sahib olan Səbirə Əliyeva, martda Tbilisi şəhərində (Gürcüstan) baş tutan Avropa Çempionatını yeddinci pillədə başa vurdu. İyulda gənclər arasında Avropa Çempionatının qalibi olan Səbirə Əliyeva avqustda gənclər arasında Dünya Çempionatının gümüş medalına sahib oldu. 2014-cü ildə Səbirə Əliyeva əvvəlcə Paris şəhərində (Fransa) Fransa Qran-Prisinin bürünc medalına sahib oldu.
Simsiz rabitə
Simsiz rabitə və ya naqilsiz rabitə — elektrik keçiricisi, fiber-optik və ya digər davamlı idarə olunan mühitdən istifadə etmədən iki və daha çox məntəqə arasında məlumatların ötürülməsi. Ən geniş yayılmış naqilsiz texnologiyalar radioda istifadə edilir. Radio dalğaları ilə nəzərdə tutulan məsafələr qısa da ola bilər, uzaq da. Bunlar uzaq məsafəli radio rabitələrdə minlərlə hətta milyonlarla kilometrə qədər və ya televiziya üçün bir neçə metrə kimi ola bilər. Bu, telsiz (iki istiqamətli radio), mobil telefonlar, cib kompüteri və naqilsiz şəbəkə də daxil olmaqla stasionar, mobil və portativ tətbiqlərin müxtəlif növlərini əhatə edir. Radio naqilsiz texnologiyaların tətbiqinin digər nümunələrinə GPS hissələri, naqilsiz kompüter siçanı, klaviaturası, qulaqlıq, radio qəbuledici, peyk televiziyası , yerüstü televiziya və radiotelefon daxildir. LTE, LTE-Advanced, Wi-Fi, Bluetooth ən geniş yayılmış müasir naqilsiz texnologiyalardan bir neçəsidir. == Tətbiqi == === Mobil telefon === Simsiz texnologiyanın ən məşhur nümunələrindən biri mobil telefondur. 2010-cu ilin sonuna olan məlumata görə, dünya üzrə 6,6 milyarddan çox mobil abunəçi mövcud idi. Bu simsiz telefonlar siqnal qüllələrindən gələn radio dalğalarından istifadə edərək istifadəçilərinə dünyanın bir çox yerindən telefon zəngləri etməyə imkan verir.
Türkmənistanda rabitə
Türkmənistanda telekommunikasiya — Türkmənistan iqtisadiyyatının bir sahəsidir. == Mobil rabitə == Türkmənistanda mobil rabitə GSM formatında həyata keçirilir. Bir mobil "Altın Asır" operatoru GSM formatında işləyir. Monopol bir şirkətdir, 2010-cu ildə şirkət 500 mindən çox abunəçiyə xidmət göstərirdi.2010-cu ildə lider 2,4 milyon abunəçisi olan MTS-Türkmənistan şirkəti idi. Lakin 21 dekabr 2010-cu ildə MTS şirkəti rabitə xidmətlərinin göstərilməsini dayandırdı, yəni şirkətin bütün abunələri (2,4 milyon nəfər) əlaqədən çıxdı. Elə həmin gün ana şirkət olan MTS-nin (Rusiya) rəsmi elanında deyilirdi ki, "Rabitə Nazirliyi tərəfindən üçtərəfli müqavilənin bir sıra pozuntuları ilə bağlı şirkət Beynəlxalq Ticarət Palatasındakı Beynəlxalq Arbitraj Məhkəməsinə iddia qaldırıb. Türkmənistan və ayrıca BCTI lisenziyalarının dayandırılması barədə yuxarıda göstərilən bildirişlə əlaqədar Türkmənistanın Arbitraj Məhkəməsinə iddia verdi. 30 avqust 2012-ci ildə MTS-Türkmənistan işini davam etdirdi və sakinlərinə mobil xidmətlər göstərməyə başladı. === Mobil abunəçilər === 3.198.000 (2009-cu il üçün) Ölkənin dünya ilə müqayisəsi: 117 == İnternet == Türkmənistan 1997-ci ildə MCI Communications (daha sonra MCI WorldCom) ilə müqaviləyə əsasən İnternetə giriş əldə etmişdir. 2001-ci ildə TürkmənTelecom məlumat ötürmə xidmətlərinin göstərilməsində inhisara çevrildikdə az sayda müstəqil İnternet provayderi fəaliyyətlərini dayandırmaq məcburiyyətində qaldı.
Zeta sabiti
Zeta sabiti — tam ədədi Rieman zeta funksiyasında yerində yazmaqla alınan sabit. == 0 və 1-də Rieman zeta funksiyası == 0-da Rieman zeta funksiyası aşağıdakı kimidir: ζ ( 0 ) = B 1 = − 1 2 . {\displaystyle \zeta (0)=B_{1}=-{\frac {1}{2}}.} 1-də Rieman zeta funksiyası aşağıdakı kimidir: ζ ( 1 ) = ∞ . {\displaystyle \zeta (1)=\infty .\,} == Müsbət cüt tam ədədlər == Müsbət cüt tam ədədlər üçün aşağıdakı kimidir: ζ ( 2 n ) = ( − 1 ) n + 1 B 2 n ( 2 π ) 2 n 2 ( 2 n ) ! {\displaystyle \zeta (2n)=(-1)^{n+1}{\frac {B_{2n}(2\pi )^{2n}}{2(2n)!}}} n ≥ 1 {\displaystyle n\geq 1} düsturuna əsasən hesablanmış zeta funksiyası: ζ ( 2 ) = 1 + 1 2 2 + 1 3 2 + ⋯ = π 2 6 = 1.6449 … {\displaystyle \zeta (2)=1+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}=1.6449\dots } ; Bazel problemi ζ ( 4 ) = 1 + 1 2 4 + 1 3 4 + ⋯ = π 4 90 = 1.0823 … {\displaystyle \zeta (4)=1+{\frac {1}{2^{4}}}+{\frac {1}{3^{4}}}+\cdots ={\frac {\pi ^{4}}{90}}=1.0823\dots } ; Fizikada Ştefan–Boltsman qanunu və Vyana Yaxınlaşması ζ ( 6 ) = 1 + 1 2 6 + 1 3 6 + ⋯ = π 6 945 = 1.0173... … {\displaystyle \zeta (6)=1+{\frac {1}{2^{6}}}+{\frac {1}{3^{6}}}+\cdots ={\frac {\pi ^{6}}{945}}=1.0173...\dots } ζ ( 8 ) = 1 + 1 2 8 + 1 3 8 + ⋯ = π 8 9450 = 1.00407... … {\displaystyle \zeta (8)=1+{\frac {1}{2^{8}}}+{\frac {1}{3^{8}}}+\cdots ={\frac {\pi ^{8}}{9450}}=1.00407...\dots } ζ ( 10 ) = 1 + 1 2 10 + 1 3 10 + ⋯ = π 10 93555 = 1.000994... … {\displaystyle \zeta (10)=1+{\frac {1}{2^{10}}}+{\frac {1}{3^{10}}}+\cdots ={\frac {\pi ^{10}}{93555}}=1.000994...\dots } ζ ( 12 ) = 1 + 1 2 12 + 1 3 12 + ⋯ = 691 π 12 638512875 = 1.000246 … {\displaystyle \zeta (12)=1+{\frac {1}{2^{12}}}+{\frac {1}{3^{12}}}+\cdots ={\frac {691\pi ^{12}}{638512875}}=1.000246\dots } ζ ( 14 ) = 1 + 1 2 14 + 1 3 14 + ⋯ = 2 π 14 18243225 = 1.0000612 … {\displaystyle \zeta (14)=1+{\frac {1}{2^{14}}}+{\frac {1}{3^{14}}}+\cdots ={\frac {2\pi ^{14}}{18243225}}=1.0000612\dots } Müsbət tam ədəd üçün olan zeta ilə Bernulli ədədləri arasındakı əlaqə aşağıdakı kimi yazılır: 0 = A n ζ ( n ) − B n π n {\displaystyle 0=A_{n}\zeta (n)-B_{n}\pi ^{n}\,} == Müsbət tək tam ədədlər == Buna misal olaraq bir neçəsini göstərmək olar: ζ ( 1 ) = 1 + 1 2 + 1 3 + ⋯ = ∞ {\displaystyle \zeta (1)=1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots =\infty } ζ ( 3 ) = 1 + 1 2 3 + 1 3 3 + ⋯ = 1.20205 … {\displaystyle \zeta (3)=1+{\frac {1}{2^{3}}}+{\frac {1}{3^{3}}}+\cdots =1.20205\dots } ; Aperi sabiti ζ ( 5 ) = 1 + 1 2 5 + 1 3 5 + ⋯ = 1.03692 … {\displaystyle \zeta (5)=1+{\frac {1}{2^{5}}}+{\frac {1}{3^{5}}}+\cdots =1.03692\dots } ζ ( 7 ) = 1 + 1 2 7 + 1 3 7 + ⋯ = 1.00834 … {\displaystyle \zeta (7)=1+{\frac {1}{2^{7}}}+{\frac {1}{3^{7}}}+\cdots =1.00834\dots } ζ ( 9 ) = 1 + 1 2 9 + 1 3 9 + ⋯ = 1.002008 … {\displaystyle \zeta (9)=1+{\frac {1}{2^{9}}}+{\frac {1}{3^{9}}}+\cdots =1.002008\dots } == Zeta Sabitləri Cəmi == Zeta Sabitləri Cəminin düsturu aşağıdakı kimidir: ∑ k = 2 ∞ ( ζ ( k ) − 1 ) = 1 {\displaystyle \sum _{k=2}^{\infty }(\zeta (k)-1)=1} == Xarici keçidlər == Simon Pluffe "Zeta sabiti Arxivləşdirilib 2009-01-30 at the Wayback Machine", (1998). Simon Pluffe "Zeta sabiti haqqında Arxivləşdirilib 2009-04-04 at the Wayback Machine Simon Pluffe "PDF Zeta sabiti Arxivləşdirilib 2011-09-26 at the Wayback Machine" (2006). Linas Vepstas "Simon Pluffi Linas.org" Math.
İon rabitə
İon rabitəsi — elektromənfiliyinə görə bir-birindən kəskin fərqlənən atomlar arasında, yəni metallarla qeyri-metallar arasında əmələ gələn rabitə növüdür. == Xarakteristika == İon rabitəsinin əmələgəlmə mexanizmi 1916-cı ildə alman alimi V.Kosselin irəli sürdüyü heteropolyar nəzəriyyə əsasında izah olunur. Bu nəzəriyyəyə görə ion rabitəsi elektronun bir atomdan başqa atoma keçdiyi zaman yaranır və nəticədə hər iki atom qonşu təsirsiz qazın davamlı konfiqurasiyasını yaradır. Belə ki, xarici elektron təbəqəsi, elektron verən atom üçün özündən əvvəl, elektron qəbul edən atom üçün isə özündən sonra gələn təsirsiz qazın elektron konfiqurasiyasına malik olur. İonların bir-birini cəzb etməsi yolu ilə əmələ gələn birləşmələrə heteropolyar və yaxud ion birləşmələri deyilir. Elektrostatik cəzbetmə ilə əmələ gələn ionlar arasındakı kimyəvi rabitəyə elek-trovalent və ya ion rabitəsi deyilir. İon rabitəli birləşmələr qələvi və qələvi-torpaq metalları ilə halogenlər arasında daha asan əmələ gəlir. Burada da yenə atomlar arasında yaranan rabitə bütünlüklə ion rabitəsi olmur. Məsələn, rentgenoqrafik tədqiqatlara əsasən müəyyən edilmişdir ki, LİF molekulunda elektron buludunun təxminən 0,1 hissəsi ionlararası sərhəddə qalır. Deməli, litiumla ftor arasında yaranan rabitənin 90% -i ion, 10%-i isə kovalent rabitədən ibarətdir. Odur ki, həmin ionların faktiki yükü +1 və -1 deyil, +0,9 və -0,9-dur.
Üçqat rabitə
Kimyada üçqat rabitə, bir kovalent tək əlaqədə adi iki əvəzinə altı əlaqə elektronunun iştirak etdiyi iki atom arasındakı kimyəvi rabitədir. Üçlü rabitələr ekvivalent tək rabitə və ya ikiqat rabitədən daha güclüdür. Ən çox yayılmış üçqat rabitə azot N2 molekulundadır; Ən çox yayılmış ikincisi, alkinlərdə tapıla bilən iki karbon atomu arasında olmasıdır. Tərkibində üçlü bağ olan digər funksional qruplar siyanidlər və izosiyanidlərdir. Dinitrogen və karbon monoksit kimi bəzi diatomik molekullar da üçqat bağlanır. Skelet formullarında üçlü bağ iki bağlı atom arasında üç paralel xətt (≡) şəklində çəkilir.
Sabine Postel
Sabine Postel (10 may 1954) — alman aktyor. == Filmoqrafiyası == 1982: Die Aufgabe des Dr. Graefe 1983: Engel auf Rädern 1984: The Brief 1986: Der Antrag 1986: Bankgeheimnisse 1987–1989: Ein Fall für zwei 1987: Großstadtrevier – Geleimt 1988: Wilder Westen inclusive 1988: Zwei alte Damen geben Gas 1989: Tatort: Der Pott 1989: Lindenstraße 1990: Das Erbe der Guldenburgs 1991: Leo und Charlotte 1992: Auf Achse 1992: Unser Lehrer Doktor Specht 1992: Schlafende Hunde 1993: Die schönsten Jahre unseres Lebens 1993–1996: Nicht von schlechten Eltern 1994: Ohne Schein läuft nichts 1994: Molls Reisen 1995: Alte Freunde küsst man nicht 1995: Die Kommissarin – Familienfest 1997: Frauen morden leichter 1997: Tatort als KHK’in Inga Lürsen, Folgen siehe 1998: Titus, der Satansbraten 1998: Der letzte Zeuge 1999: Pfeifer 1999: Heimatgeschichten 1999–2002: Nesthocker – Familie zu verschenken 2000: Die Cleveren 2001: Eiskalt 2001: Du bist mein Kind 2001: Ein mörderischer Plan 2004: Mein Mann und seine Mütter 2007: Erdbeereis mit Liebe 2007: Liebling, wir haben geerbt!
Şakir Sabir Zabit
Şakir Sabir Zabit (1913, Kərkük – 1990, Bağdad) — folklorşünas, etnoqraf və tarixçi. == Həyatı == Şakir Sabir Zabit 1913-cü ildə Kərkükdə anadan olub. İlk okulu Kafridə, orta okulu Kəlkükdə, liseyi Bağdadda bitirib. 1933-cü ildə Hərbiyyədən məzun olmuş Şakir Sabir Zabit İraq ordusunda zabit kimi xidmət edib. 1938-də hərbi məktəbi bitirib. 1953-cü ildə isə polkovnik rütbəsində təqaüdə çıxıb. Şakir Sabirın peşəsi zabit olduğuna görə ədəbi-bədii, elmi-publisistik əsərlərində “Zabit” təxəllüsündən istifadə edib. 1959-cu ildə general Şakir Sabir təqaüdə çıxır. == Fəaliyyəti == İraqda yaşayan özlərini türkman adlandıran türklərin tarixindən, soy köklərindən bəhs edən “Mə’cəzu-tərixu —t—türkmani filıraqi” kitabını 1961-ci ildə nəşr etdirir. Ərəbcə yazılmış bu kitab nəinki türkmanlar, hətta ərəb araşdırıcıları tərəfindən də maraqla qarşılanır.
Samit-sait yazısı
Əbcəd hesabı – Türk, ərəb və fars ədəbiyyatında bir hadisəni, bir işin tarixini bildirmək üçün işlənən və rəqəmləri hərflərdən ibarət olan hesabdır.