Поиск по словарям.

Результаты поиска

OBASTAN VİKİ
Mina Əhədi
Mina Əhədi (farsca:مینا احدی) — əslən İran azərbaycanlılarından olan siyasi aktivist. Hal-hazırda İran Fəhlə-Kommunist partiyasının Mərkəzi Komitəsinin və Siyasi Büronun üzvüdür. 1956-cı ildə Cənubi Azərbaycanda Əbhər şəhərində anadan olmuşdur. Həyat yoldaşı da siyasi aktivist olmuş və İran İslam Respublikası tərəfindən cütlüyün məxsusi olaraq evlilik ildönümü tarixində edam edilmişdir. Bu hadisə Mina Əhədinin edam hökmünə qarşı sonrakı mübarizəsinin əsas motivasiya qaynağı olmuşdur. O, hal-hazırda Almaniyada yaşayır və işləyir. 2 qız övladı vardır. Mina Əhədi inanc əsaslı qanunlar sisteminə qarşıdır və bütün vətəndaşların bərabər olacağı hüquq sistemini dəstəkləyir. Bundan əlavə Mina Əhədi Edam Əleyhinə Beynəlxalq Komitənin və Daşlama (Rəcm) Əleyhinə Komitənin əsas simasıdır. O, həmçinin Almaniya Keçmiş Müsəlman Mərkəzi Şurasının əsas qurucusudur.
Kəsişmək
Kəsişmək ( ing. intersect ~ ru. пересекать ~ tr. kesişmek) – verilənlər bazalarının idarə olunmasında istifadə olunan relyasiya cəbri operatoru. Birtipli kəmiyyətləri özündə saxlayan eyni sayda sahədən ibarət olan iki A və B münasibətləri (cədvəlləri) üçün INTERSECT A , B yeni bir münasibətdir (cədvəldir); bu yeni münasibət (cədvəl) həm A-da, həm də B-də olan kortejlərdən (sətirlərdən) təşkil olunur. == Ədəbiyyat == İsmayıl Calallı (Sadıqov), “İnformatika terminlərinin izahlı lüğəti”, 2017, “Bakı” nəşriyyatı, 996 s.
Kəsilməz funksiya
Funksiyanın kəsilməzliyi — əgər lim x → x 0 {\displaystyle \lim _{x\to x_{0}}} f(x)=f( x 0 {\displaystyle x_{0}} ) (1) olarsa, yəni f(x) funksiyası x= x 0 {\displaystyle x_{0}} -da təyin olunub və istənilən Ԑ>0 üçün elə δ=δ(Ԑ, x 0 {\displaystyle x_{0}} ) >0 ədədi var ki, | x − x 0 | {\displaystyle \left\vert x-x_{0}\right\vert } ˂δ şərtini ödəyən və f(x)-in təyin oblastından olan istənilən x üçün | f ( x ) − f ( x 0 ) | {\displaystyle \left\vert f(x)-f(x_{0})\right\vert } ˂Ԑ bərabərsizliyi doğrudursa, onda f(x) funksiyası x= x 0 {\displaystyle x_{0}} -da (və ya x 0 {\displaystyle x_{0}} nöqtəsində) kəsilməz adlanır. Əgər f(x) funksiyası verilmiş X= { x } {\displaystyle \{x\}} çoxluğunun (intervalın, parçanın və i.a.) bütün nöqtələrində kəsilməzdirsə, bu funksiya X çoxluğunda kəsilməz adlanır. Əgər f(x) funksiyasının X= { x } {\displaystyle \{x\}} təyin oblastına daxil olan və ya bu çoxluğun limit nöqtəsi olan hər hansı x= x 0 {\displaystyle x_{0}} nöqtəsində (1) bərabərliyi ödənmirsə (yəni ya (a) f( x 0 {\displaystyle x_{0}} ) ədədi yoxdur,başqa sözlə,funksiya x= x 0 {\displaystyle x_{0}} nöqtəsində təyin olunmayıb, ya (b) lim{x \to x 0 {\displaystyle x_{0}} }{f(x)} yoxdur, ya da (c) (1) düsturunun hər iki tərəfinin mənası var,lakin onlar bir-birinə bərabər deyil), onda x 0 {\displaystyle x_{0}} nöqtəsi f(x) funksiyasının kəsilmə nöqtəsi adlanır. Kəsilmə nöqtələrini aşağıdakı kimi fərqləndirirlər: 1) I növ kəsilmə nöqtəsi elə x 0 {\displaystyle x_{0}} nöqtəsinə deyilir ki, bu nöqtədə sonlu sol və sağ limitləri f( x 0 {\displaystyle x_{0}} -0)= lim x → x 0 − 0 {\displaystyle \lim _{x\to x_{0}-0}} f(x), f( x 0 {\displaystyle x_{0}} +0)= lim x → x 0 + 0 {\displaystyle \lim _{x\to x_{0}+0}} f(x) var;2) II növ kəsilmə - bütün qalan nöqtələrdir. f( x 0 {\displaystyle x_{0}} +0) - f( x 0 {\displaystyle x_{0}} -0) fərqi x 0 {\displaystyle x_{0}} nöqtəsində funksiyanın sıçrayışı adlanır. Əgər f( x 0 {\displaystyle x_{0}} -0) = f( x 0 {\displaystyle x_{0}} +0) bərabərliyi ödənərsə, onda x 0 {\displaystyle x_{0}} kəsilmə nöqtəsi aradan qaldırıla bilən adlanır. Əgər f( x 0 {\displaystyle x_{0}} -0) və ya f( x 0 {\displaystyle x_{0}} +0) limitlərindən heç olmasa biri ∞ simvoluna bərabərdirsə, onda x 0 {\displaystyle x_{0}} sonsuz kəsilmə nöqtəsi adlanır. Əgər f( x 0 {\displaystyle x_{0}} -0) = f( x 0 {\displaystyle x_{0}} ) f( x 0 {\displaystyle x_{0}} +0) = f( x 0 {\displaystyle x_{0}} ) bərabərliyi ödənərsə, onda f(x) funksiyasına x 0 {\displaystyle x_{0}} nöqtəsində soldan (sağdan) kəsilməz deyilir. f(x) funksiyasının x 0 {\displaystyle x_{0}} nöqtəsində kəsilməzliyi üçün zəruri və kafi şərt üç ədədin bərabərliyidir: f( x 0 {\displaystyle x_{0}} -0) = f( x 0 {\displaystyle x_{0}} +0) = f( x 0 {\displaystyle x_{0}} ) 2.Elementar funksiyaların kəsilməzliyi.Əgər f(x) və g(x) funksiyaları x= x 0 {\displaystyle x_{0}} nöqtəsində kəsilməzdirlərsə,onda a)f(x) ± g(x) b)f(x)g(x) c) f ( x ) g ( x ) {\displaystyle {\frac {f(x)}{g(x)}}} (g( x 0 {\displaystyle x_{0}} )≠0) funksiyaları da x= x 0 {\displaystyle x_{0}} -da kəsilməzdir. Xüsusi halda: a) tam rasional P(x)= a 0 {\displaystyle a_{0}} + a 1 {\displaystyle a_{1}} x+...+ a n {\displaystyle a_{n}} x n {\displaystyle x^{n}} funksiyası istənilən x nötəsində kəsilməzdir; b) kəsr rasional R(x)= a 0 + a 1 x + .
Kəsilməz funksiyalar
Funksiyanın kəsilməzliyi — əgər lim x → x 0 {\displaystyle \lim _{x\to x_{0}}} f(x)=f( x 0 {\displaystyle x_{0}} ) (1) olarsa, yəni f(x) funksiyası x= x 0 {\displaystyle x_{0}} -da təyin olunub və istənilən Ԑ>0 üçün elə δ=δ(Ԑ, x 0 {\displaystyle x_{0}} ) >0 ədədi var ki, | x − x 0 | {\displaystyle \left\vert x-x_{0}\right\vert } ˂δ şərtini ödəyən və f(x)-in təyin oblastından olan istənilən x üçün | f ( x ) − f ( x 0 ) | {\displaystyle \left\vert f(x)-f(x_{0})\right\vert } ˂Ԑ bərabərsizliyi doğrudursa, onda f(x) funksiyası x= x 0 {\displaystyle x_{0}} -da (və ya x 0 {\displaystyle x_{0}} nöqtəsində) kəsilməz adlanır. Əgər f(x) funksiyası verilmiş X= { x } {\displaystyle \{x\}} çoxluğunun (intervalın, parçanın və i.a.) bütün nöqtələrində kəsilməzdirsə, bu funksiya X çoxluğunda kəsilməz adlanır. Əgər f(x) funksiyasının X= { x } {\displaystyle \{x\}} təyin oblastına daxil olan və ya bu çoxluğun limit nöqtəsi olan hər hansı x= x 0 {\displaystyle x_{0}} nöqtəsində (1) bərabərliyi ödənmirsə (yəni ya (a) f( x 0 {\displaystyle x_{0}} ) ədədi yoxdur,başqa sözlə,funksiya x= x 0 {\displaystyle x_{0}} nöqtəsində təyin olunmayıb, ya (b) lim{x \to x 0 {\displaystyle x_{0}} }{f(x)} yoxdur, ya da (c) (1) düsturunun hər iki tərəfinin mənası var,lakin onlar bir-birinə bərabər deyil), onda x 0 {\displaystyle x_{0}} nöqtəsi f(x) funksiyasının kəsilmə nöqtəsi adlanır. Kəsilmə nöqtələrini aşağıdakı kimi fərqləndirirlər: 1) I növ kəsilmə nöqtəsi elə x 0 {\displaystyle x_{0}} nöqtəsinə deyilir ki, bu nöqtədə sonlu sol və sağ limitləri f( x 0 {\displaystyle x_{0}} -0)= lim x → x 0 − 0 {\displaystyle \lim _{x\to x_{0}-0}} f(x), f( x 0 {\displaystyle x_{0}} +0)= lim x → x 0 + 0 {\displaystyle \lim _{x\to x_{0}+0}} f(x) var;2) II növ kəsilmə - bütün qalan nöqtələrdir. f( x 0 {\displaystyle x_{0}} +0) - f( x 0 {\displaystyle x_{0}} -0) fərqi x 0 {\displaystyle x_{0}} nöqtəsində funksiyanın sıçrayışı adlanır. Əgər f( x 0 {\displaystyle x_{0}} -0) = f( x 0 {\displaystyle x_{0}} +0) bərabərliyi ödənərsə, onda x 0 {\displaystyle x_{0}} kəsilmə nöqtəsi aradan qaldırıla bilən adlanır. Əgər f( x 0 {\displaystyle x_{0}} -0) və ya f( x 0 {\displaystyle x_{0}} +0) limitlərindən heç olmasa biri ∞ simvoluna bərabərdirsə, onda x 0 {\displaystyle x_{0}} sonsuz kəsilmə nöqtəsi adlanır. Əgər f( x 0 {\displaystyle x_{0}} -0) = f( x 0 {\displaystyle x_{0}} ) f( x 0 {\displaystyle x_{0}} +0) = f( x 0 {\displaystyle x_{0}} ) bərabərliyi ödənərsə, onda f(x) funksiyasına x 0 {\displaystyle x_{0}} nöqtəsində soldan (sağdan) kəsilməz deyilir. f(x) funksiyasının x 0 {\displaystyle x_{0}} nöqtəsində kəsilməzliyi üçün zəruri və kafi şərt üç ədədin bərabərliyidir: f( x 0 {\displaystyle x_{0}} -0) = f( x 0 {\displaystyle x_{0}} +0) = f( x 0 {\displaystyle x_{0}} ) 2.Elementar funksiyaların kəsilməzliyi.Əgər f(x) və g(x) funksiyaları x= x 0 {\displaystyle x_{0}} nöqtəsində kəsilməzdirlərsə,onda a)f(x) ± g(x) b)f(x)g(x) c) f ( x ) g ( x ) {\displaystyle {\frac {f(x)}{g(x)}}} (g( x 0 {\displaystyle x_{0}} )≠0) funksiyaları da x= x 0 {\displaystyle x_{0}} -da kəsilməzdir. Xüsusi halda: a) tam rasional P(x)= a 0 {\displaystyle a_{0}} + a 1 {\displaystyle a_{1}} x+...+ a n {\displaystyle a_{n}} x n {\displaystyle x^{n}} funksiyası istənilən x nötəsində kəsilməzdir; b) kəsr rasional R(x)= a 0 + a 1 x + .
Kəsilmə emalçısı
Kəsilmə emalçısı ( ing. interrupt handler (IH) ~ ru. обработчик прерываний ~ tr. kesme işleyici) – müəyyən kəsilmələri emal etmək üçün yerinə yetirilən xüsusi prosedur. Hər bir kəsilmə növü müəyyən prosedurla bağlıdır. Kompüter yaddaşının aşağı ünvanlarında hər bir kəsilmə üçün uyğun prosedurların ünvanlar cədvəli saxlanılır. Bu ünvanlar göstəricilər (POINTERS) və ya vektorlar (VECTORS) adlandırılır, çünki onlar kəsilmə emalçılarının başlanğıcını göstərir. Proqramçılar sistemdə olan kəsilmə emalçıları toplusunu əvəzləmək və ya genişləndirmək üçün özlərinin kəsilmə emalçılarını yarada bilərlər. == Ədəbiyyat == İsmayıl Calallı (Sadıqov), “İnformatika terminlərinin izahlı lüğəti”, 2017, “Bakı” nəşriyyatı, 996 s.
Kəsilmə nöqtəsi
==Kəsilmə nöqtəsi== Kəsilmə nöqtəsi-– proqramın vəziyyətinin, dəyişənlərin qiymətlərinin proqramçı tərəfindən öyrənilməsi məqsədilə proqramın çalışmasının durdurulduğu nöqtədir. Kəsilmə nöqtəsi sazlanma prosesində qoyulur və istifadə olunur: bunun üçün proqramın mətnində bir neçə yerdə hər hansı keçid, çağırış və ya tələ (HOOK) komandası qoyulur ki, idarəetməni sazlama proqramına ötürsün == Ədəbiyyat == İsmayıl Calallı (Sadıqov), "İnformatika terminlərinin izahlı lüğəti", 2017, "Bakı" nəşriyyatı, 996 s.
Kəsilməz enerji qaynağı
Kəsilməz enerji qaynağı –( eng. UPS Uninterruptible Power Supply ) kompüter (yaxud başqa elektron qurğu) ilə qida mənbəyi (adətən, məişət elektrik şəbəkəsi) arasına qoşulan və elektrik enerjisinin kəsilməsi nəticəsində kompüterə daxil olan cərəyanın kəsilməməsinə, bununla da kompüterin mümkün zədələnmələrdən qorunmasına təminat verən qurğu. UPS-lərin müxtəlif modelləri müxtəlif müdafiə səviyyələri təklif edir. UPS-lərin hamısı batareya və cərəyanın itməsini bildirən indikatorla təchiz olunur; indikator işə düşəndə UPS-in gərginliyi dərhal onun batareyasına keçir ki, istifadəçi işinin nəticəsini saxlaya və kompüteri normal söndürə bilsin. Batareyanın cərəyanı saxlama müddəti UPS-in modelindən asılıdır. Daha mükəmməl modellərdə verilən elektrik enerjisinin süzgəcdən keçirilməsi, gərginliyin titrəyişindən mürəkkəb qorunma imkanları vardır. Bundan başqa, belə modellərdə əməliyyat sisteminin UPS ilə qarşılıqlı əlaqədə olması üçün ardıcıl port var ki, bu da xarici enerji təchizatı kəsildikdə sistemi avtomatik söndürməyə imkan verir. == Ədəbiyyat == İsmayıl Calallı (Sadıqov), “İnformatika terminlərinin izahlı lüğəti”, 2017, “Bakı” nəşriyyatı, 996 s.
Kəsilmə sorğusu xətləri
Kəsilmə sorğusu xətləri( ing. interrupt request lines (IRQ) ~ ru. линии запроса прерывания ~ tr. kesme isteği hatları) – kəsilmələri (xidmət haqqında sorğuları) qurğulardan (məsələn, giriş-çıxış portlarından, klaviaturadan, disksürəndən) mikroprosessora göndərən aparat vasitələri kanalları. Kəsilmə sorğusu xətləri kompüterin aparat vasitələrində quraşdırılıb və onlara müxtəlif səviyyəli öncəliklər (prioritetlər) verilib, buna görə də mikroprosessor daxil olan kəsilmənin nisbi vacibliyini müəyyənləşdirə bilər. == Ədəbiyyat == İsmayıl Calallı (Sadıqov), “İnformatika terminlərinin izahlı lüğəti”, 2017, “Bakı” nəşriyyatı, 996 s.
Əhəd
Əhəd — kişi adı. Əhəd Əliyev — Azərbaycan qarmonçusu. Əhəd Kərimov — Azərbaycan SSR Ali Sovetinin X çağırış deputatı Əhəd Hüseyni — Cənubi Azərbaycanlı heykəltaraş və rəssam. Əhəd Yaqubov — geologiya-mineralogiya elmləri doktoru (1941) Əhəd Muxtar — tərcüməçi. Əhəd Rəhmanzadə — iqtisad elmləri doktoru, professor.
Abbasəli Əsədi
Əsədi Abbasəli Əsədulla oğlu - Təbriz teatrının yarandığı ilk günlərdən bu sənət ocağı ilə bağlı olan teatr fəadailərindən biri. == Həyatı == Abbasəli Əsədi 1888-ci ildə Təbrizdə şöhrətli hərbçi ailəsində doğulub. İbtidai təhsilini şəhərdəki "Loğman" mədrəsəsində alıb. Elmə, maarifə rəğbət bəsləyən Əsədulla kişi təhsilini davam etdirmək üçün Abbasəlini Tehran şəhərinə göndərib. Abbasəli Əsədi burada orta təhsilə yiyələnib. Bayram günlərində bu məktəbin dram dərnəyində fars dilində kiçik məzhəkə və məsxərələr hazırlanıb oynanılırdı. Abbasəli göstərilən məzhəkələrdən birində uşaq rolu oynamaqla səhnəyə ilk dəfə qədəm basıb. Təhsilini başa vurub Təbrizə qayıdan Abbasəli Əsədi 1918-ci ildə inqilabi hərəkata qoşulub. İnqilab yatırılanda Təbrizi tərk etməli olub. 1921-ci ildə Cəlil Məmmədquluzadə ilə Əhar şəhərində görüşüb.
Abbe ədədi
Abbe ədədi – optik şüaların dispersiyasını xarakterizə edən kəmiyyətdir. Abbe ədədi ʋ ilə işarə olunur. ʋ-nin ədədi qiymətləri şüşənin tərkibindən asılıdır. Kiçik dispersialı optik şüşələr üçüm 60-70-dən (məsələn: silikat, kron), böyük dispersiyalı şüşələr üçün 20-40-a dək (məsələn: ağır flint) dəyişir. Abbe ədədi optik sistemlərin hesablanması üçün lazımlıdır. Bu kəmiyyət optik şüşələrin bütün kataloqlarında verilir. == İstinadlar == Depman İ.Y. "Ernst Abbe (1840-1905)" "Природа", 1940. №1 Пудоровский А.И., "Теория оптических приборов", т.1, 2 изд., М.-Л., 1948.
Erdös ədədi
Erdöş ədədi hər hansı alimin həmmüəlliflik baxımından məşhur macar riyaziyyatçısı Pal Erdöşə nə qədər yaxın olduğunu göstərir. Pal Erdöş digər tanınmış alimlərlə ən çox əməkdaşlıq etmiş riyaziyyatçı sayılir. Onunla həmmüəllif olmuş alimlərin sayı 511-dir. Bu alimlərin Erdöş ədədi tərifə görə 1-ə bərabər götürülür. Erdöş ədədi 1-ə bərabər olan alimlə həmmüəllif olmuş digər alimin Erdöş ədədi 2-yə bərabərdir və s. Amerikanın Oakland Universitetinin The Erdős Number Project layihəsinin nəticələrinə görə tanınmış riyaziyyatçıların Erdöş ədədi kifayət qədər kiçikdir. Məsələn, Fields medalına layiq görülmüş riyaziyyatçıların Erdöş ədədi orta hesabla 3-ə bərabərdir . Qeyd etmək lazımdır ki, Oakland Universitetinin "The Erdős Number Project" layihəsində bütün məşhur mükafatçıların (Nobel, Fields, Wolf, Abel, Steele və s.) Erdöş ədədləri ayrıca siyahılar şəklində göstərilib . Bu layihədə həmçinin indiyə qədər bütün dünya alimləri arasında Erdöş ədədi 2-ni aşmayan alimlərin siyahısı müəyyənləşdirilmişdir . Fields medalçılarının orta Erdöş ədədi 3-ə bərabərdir.
Eyler ədədi
e ədədi və ya Eyler ədədi — riyaziyyat, təbiət elmləri və mühəndislikdə istifadə edilən sabit bir həqiqi ədəd, natural loqarifmanin əsası. e ədədi tam qiyməti sonlu sayda rəqəmdən istifadə edilərək yazıla bilməz. Təxmini olaraq qiyməti 2.71828-ə bərabərdir. == Tarixi == Bu ədədi "Loqarifmlərin cədvəlinin təsviri" işinin (1614-cü il) müəllifi şotlandiyalı alim Neveranın şərəfinə "nevera" ədədi də adlandırırlar. Lakin, onun bu işi o qədər də düzgün deyildir, çünki x ədədinin loqarifmi 10 7 ⋅ log 1 / e ⁡ ( x 10 7 ) {\displaystyle 10^{7}\cdot \,\log _{1/e}\left({\frac {x}{10^{7}}}\right)\,\!} bərabər idi. İlk dəfə 1618-ci ildə dərc edilmiş Neperanın yuxarıda göstərilən işinin ingilis dilinə tərcüməsi məxfi saxlanılır. Çünki orada yalnız kinematikada məlum olan natural loqarifmaların cədvəli olur və burada sabit olmur. Güman edilir ki, ingilis riyaziyyatçısı Otred cədvəlin müəllifi idi. Bu sabitə birinci Leybnits Qyuyqensu məktublarında rast gəlinir (1690 — 1691 il). O bu sabiti b hərfi ilə işarələyirdi.
Koordinasiya ədədi
Koordinasiya ədədi - kristallokimyanın əsas anlayışlarından biri; hər hansı atom və ya ion ətrafında ən yaxın məsafədə olan atom, yaxud ionların sayı. Qoldşmidt-Paulinq kristallokimyasında hesab edilir ki, koordinasiya ədədi radiusların (məsələn: ion birləşmələrində kation və anionların radiusları) nisbəti ilə müəyyən edilir. Povarennixə görə, koordinasiya ədədi əsasən əlaqələrin istiqamətlənməsi ilə təyin olunur. Hesab edilirdi ki, birləşmələrin əsas həcmi anionlardan təşkil olunub. Məsələn: oksigen birləşmələrində, xüsusən silikatlarda, Qoldşmidtə görə, həcmin 90–92%-ni oksigen anionları təşkil edir, kationlar isə onların arasındakı boşluqlarda yerləşir. Bu halda koordinasiya ədədi asılı olaraq kationlar birləşmələrin xüsusi çəkisinə təsir edir. Məsələn: Sobolevə görə, alümosilikat və silikatların sıxlığı arasındakı fərq Al-un koordinasiya ədədi ilə bağlıdır. Belə ki, çöl şpatlarında Al koordinasiya ədədi 4-dür və onlar nisbətən yüngüldür, alüminiumun silikatlarında isə koordinasiya ədədi 6 olub nisbətən daha sıxdır. Son vaxtlar belə fikir irəli sürülür ki, birləşmələrin həcminin əsasını kationlar təşkil edir və həcmin dəyişməsi isə əsasən anionların koordinasiya ədədi ilə müəyyən olunur. Oksigen birləşmələrində oksigenin koordinasiya ədədi böyük olduqca birləşmələrin sıxlığı da çoxalır.
Max ədədi
Max ədədi, hərəkət halında olan hər hansı bir kütlənin sürətinin, kütlənin mövcud olduğu şərtlər daxilindəki səs sürətinə olan nisbətidir. Qısaca Ma ya da M deyilir. Adını Avstriyalı fizik və filosof Ernst Maxdan almışdır. Ernst Maxdan əvvəl bu mövzu haqqında Fransız fizik Sarrau da tədqiqatlar apardığında Sarrau ədədi də adlanır. Nümunə olaraq, dəniz səviyyəsində, 1 atm təzyiq şəraitində və 15oC hava istiliyində 1 Max = 1226,5 km/saat (340 metr/saniyə) olaraq müəyyənləşdirilir. Yerdə səs sürəti göyə nisbətdə daha yuxarı dəyərdədir. Yerdən yuxarıya doğru qalxdıqca havanın temperaturu aşağı düşür. Dəniz səviyyəsindən 11 km hündürlüyə qədər (Stratosfer sərhədinə qədər) olan atmosfer təbəqəsinə troposfer deyilir. Səs sürətinin kvadratı havanın temperaturu ilə düz nisbətdə dəyişdiyinə görə, yerdən yuxarıya doğru qalxdıqca səs sürəti aşağı düşür. Bununla əlaqədar olaraq o yüksəklikdəki max ədədi dəniz səviyyəsinə görə daha aşağı olur.
Mersenn ədədi
Mersenn ədədi — ( 2p ) - 1 düsturu ilə ifadə olunan ədəd. Əgər "p" sadə ədəddirsə və düsturla hesablanıb alınan ədəd də sadə ədəddirsə, alınan ədəd Mersenne ədədi adlanır. İlk dəfə bu düsturu hazırlayan və ilk Mersenn ədədini alan şəxs fransız riyaziyyatçısı Maren Mersenn (1588-1648) olmuşdur. Mersenn ədədini almaq üçün bu düsturdan istifadə olunur: ( 2p ) - 1 Bu zaman iki şərt ödənməlidir. "p" mütləq sadə ədəd olmalıdır. Alınan ədəd sadə olmalıdır. Əgər hər iki şərt də ödənirsə alınan ədəd Mersenne ədədidir. p = 2 (sadə ədəd) (2p ) - 1 = ( 22 ) - 1 = 4 - 1 = 3 (sadə ədəd) Nəticə: 3 Mersenn ədədidir. İndiyə qədər 48 Mersenn ədədi tapılıb. Mersenne ədədlərinin sonsuz olub olmadığı elmə məlum deyil.
Murtuza Əsədi
Murtuza Əsədi (29 fevral 1979, Ərdəbil) — Azərbaycan əsilli İran futbolçusu, mudafiəçi. Əsədi 2010-cu ildən Təbrizin Traktor Sazi klubuna qoşulmuşdur. O Traktor Sazi klubuna gələndən öncə Səba Batri klubunda oynamışdır. Murtuza Əsədi Traktor Sazi klubunun heyətində futbol üzrə İran çempionatının yüksək liqasında 2011/2011 mövsümündə ən güclü müdafiə xəttinin formalaşmasında əsas rol oynamışdır. O həm də həmin mövsümdə bütün oyunlarda əvəzlənmədən 90 dəqiqə meydanda olan yeganə oyunçu olmuşdur.
Oktan ədədi
Oktan ədədi ([izo]oktan sözündən) — daxiliyanma mühərrikləri üçün yanacağın detonasiyaya davamlılığını xarakterizə edən göstəricidir (yanacağın sıxılma zamanı özüalışmaya qarşı davamlılığı). Bu ədəd izooktanın (2,2,4-trimetilpentan) onun n-heptanla qarışığında olan miqdarına (həcminə nisbətdə faizlə) bərabərdir, bu halda qarışıq detonasiyaya davamlılığa görə standart test şəraitində tədqiq olunan yanacağa ekvivalentdir. Təyin üsulundan asılı olaraq tədqiqat oktan ədədi (TOƏ) və motor oktan ədədini (MOƏ) fərqləndirirlər, TOƏ ilə MOƏ arasındakı fərqə yanacaq həssaslığı (ing. fuel sensitivity) deyilir. Yanacağın detonasiyaya davamlılığını real iş şəraitində xarakterizə etmək üçün faktiki oktan ədədi (mühərriyin stend sınaqlarında) və yol oktan ədədindən (birbaşa avtomobilin yol sınaqlarında) də istifadə edilir. Izooktan hətta yüksək sıxılma dərəcəsində belə çətinliklə alışır və onun oktan ədədi 100 qəbul olunur. Əksinə, n-heptanın yanması mühərrikdən gələn səslə müşayiət olunur, ona görə də onun oktan ədədi 0 kimi qəbul edilir. Oktan ədədi 100-dən yuxarı olan benzinlər üçün şərti şkala tərtib olunmuşdur, burada tərkibinə müxtəlif miqdarda antidetonator (tetraetilqurğuşun) əlavə edilmiş izooktandan istifadə olunur. Mühərrikdən gələn səs xarakterik metal səsi kimidir. Bu səsi qarışığın sürətli yanması zamanı yaranan və silindr və porşenin divarlarından əks olunan təzyiq dalğaları yaradır.
Reynolds ədədi
Axışqanlar mexanikasında Reynolds sayı yaxud Reynolds ədədi bir mayenin (müəyyən) ətalət qüvvələrinin (FI), özlülük qüvvələrinə (Fv) nisbətinə bərabərdir, nəticə olaraq da bu iki növ gücün bir-birinə mayenin bir axış vəziyyətində nisbi əhəmiyyətini verir. Buna görə Reynolds sayısı düzgün axış və çalxalantılı (turbulent) axış kimi müxtəlif axış rejimlərini xarakterizə etmək üçün istifadə olunur. Axışqanlar mexanikasında istifadə olunan ən vacib digər əmsallardan biridir və dinamik oxşarlığı təyin etmək üçün istifadə olunur. Həndəsi cəhətdən oxşar bir axış nümunəsi fərqli axış dəyərləri olan iki fərqli maye içərisindədirsə, eyni uyğun əmsal varsa, dinamik analoq adlanır. Məsələn, bir milçək qanadının necə işlədiyini başa düşmək üçün milçək qanadının böyüdülmüş modellərinin suda işlədib və eyni hadisənin daha yavaş sürətlə araşdırılaraq tədqiq edilməsi mümkündür. Burada vacib olan şey, suyun və havanın işlədiyində eyni Re sayına sahib olmalarıdır. Borudakı sıxılmaz axışdakı Re sayı 2300-dən azdırsa, laminar axın sayılır və böyükdürsə, çalxantılı axın sayılır. İstilik köçürməsində də Reynolds teoremi fərqli nisbətlərlə istifadə edilməkdədir. Reynolds sayının artması istilik ötürmə əmsalını artırır. Reynold sayı adını 1842 ilə 1912 illəri arasında yaşamış olan və bu sayıyı tanıtan Osborne Reynolds 'dan almışdır.
Roşko ədədi
Roşko ədədi — Maye mexanikasında titrəyən axın mexanizmlərini xarakterizə edən adsız kəmiyyət. Ədəd Amerika Aeronavtika professoru olan Anatol Roşkonun şərəfinə adlandırılıb. Aşağıdakı kimi ifadə olunur: R o = f L 2 ν = S t R e {\displaystyle \mathrm {Ro} ={fL^{2} \over \nu }=\mathrm {St} \,\mathrm {Re} } S t = f L U , {\displaystyle \mathrm {St} ={fL \over U},} R e = U L ν {\displaystyle \mathrm {Re} ={UL \over \nu }} burada St adsız kəmiyyət olan Struhal ədədi; Re Reynolds ədədi; U orta axın sürəti; f axının yayılma tezliyi; L xarakterik uzunluq (məsələn, hidravlik diametr); ν mayenin kinetik özlülüyüdür. Roşko Re=50-dən Re=2000-ə qədər dairəvi silindrlər ətrafında havanın axını üzrə təcrübələr apardıqdan sonra aşağıdakı əlaqəni müəyyən etmişdir: R o = 0.212 R e − 4.5 {\displaystyle \mathrm {Ro} =0.212\mathrm {Re} -4.5} [ 50 <= Re < 200] bərabər olar. R o = 0.212 R e − 2.7 {\displaystyle \mathrm {Ro} =0.212\mathrm {Re} -2.7} [200 <= Re < 2000] bərabər olar. Ormiyer və Provansal bir sahədə axının yayılma tezliyini araşdırmış və 280 < Re < 360 intervalında Ro və Re arasında qarşılıqlı əlaqəni aşkarlamışlar. Olim, A. M.; Riethmuller, M. L.; Gameiro da Silva, M. C. "Flowfield characterisation in the wake of a low-velocity heated sphere anemometer". Exp. Fluids. 32 (6).
Setan ədədi
Setan ədədi — dizel yanacağının alışma xaraktersitikası olub işçi qarışığın yanmasının gecikmə müddətini (yanacağın silindrə püskürdüldüyü andan onun yanmağa başlamasına qədər olan müddət) təyin edir. Setan ədədi yüksək olduqca gecikmə bir o qədər kiçik olur və yanacaq qarışığı bir o qədər sakit və yumşaq yanır. Setan ədədi setanın (С16Н34, heksadekanın setan ədədi 100 qəbul olunur), α-metilnaftalinlə (setan ədədi 0-dır) qarışıqda (həcminə görə%) həcminə bərabərdir, bu halda bu qarışığın alışmasının gecikmə müddəti həmin şəraitdə sınaqdan keçirilən yanacağın bu göstəricisi ilə eyni olur. 1941-ci ilin ASTM D613 üsuluna görə setan ədədi belə formulə olunurdu. 1962-ci ildən başlayaraq ASTM D613-ə görə qarışıq üçün , α-metilnaftalin əvəzinə 2,2,4,4,6,8,8-heptametilnonan və ya izosetan (setan ədədi 15) istifadə olunur. α-metilnaftalinən imtina olunmasının bir neçə səbəbi var: o asanlıqla peroksid əmələ gətirir, bu da setan ədədinə təsir edir. Onun pis qoxusu var və onu təmiz halda almaq çox çətindir. Setan ədədi 45–55 olan dizel yanacaqları müasir dizel yanacaqlarının optimal işini təmin edir. Setan ədədi 40-dan aşağı olduqda yanmanın gecikməsi (yanacağın püskürdülməsinin başlanğıcı ilə onun alışması arasında olan müddət) və yanma kamerasında təzyiqin sürəti kəskin artır və mühərriyin yeyilməsi də artır. Standart yanacaq 48–51 setan ədədi ilə xarakterizə olunur və yüksək keyfiyyətli yanacağın (premium) setan ədədi 51–55-dir.
Stanton ədədi
Əbədi Şrek
Əbədi Şrek (ing. Shrek Forever After) — 2011-ci ildə 3D formatında çəkilmiş qısametrajlı ABŞ animasiyasıdır. Şrek və arvadı Şahzadə Fiona, uşaqları ilə birlikdə xoşbəxt ömür sürürlər. Onların bu xoşbəxt həyatına dostları çəkməli pişik, eşşək və eşşəyin balaları da daxildir. Zamanla bu firavan ailə atası rolu Şrekə cansıxıcı gəlməyə başlayır. Bu günlər ətrafındakıları qorxudaraq özündən qaçırtdığı günlərdən tamamilə fərqlidir. Özünü əsl bir div kimi hiss etdiyi günlər üçün çox darıxan Şrek, qəddar, amma şirin səsli Rumpelştilzxenlə müqavilə imzalayır. Əslində Rumpelştilzxen onu aldadır. Müqaviləni imzaladıqdan sonra Şrek fərqli bir yerə, fərqli bir zamana düşür. Bu dünyanın kralı Rumpelştilzxendir.
Əbədi Monako
Əbədi Monako (ing. Monaco Forever) — 1984-cü ildə ildə istehsal olunmuş ABŞ filmidir. Jan-Klod Van Damm epizodik rolda çəkilmişdir. cavan mavi karateçi rolunda oynamışdır. Əbədi Monako — Internet Movie Database saytında.
İbrahim Üzülmez
İbrahim Üzülməz (10 mart 1974) — sol cinah müdafiəçisi mövqeyində oynamış türk milli futbolçusu, məşqçisidir. 16 yaşında Gönenspor onun istedadını görüb transfer etdi. Burada özünü təkmilləşdirdikdən sonra sırasıyla; Kardemir Karabükspor, İskenderun Dəmir Çelik SK, Kardemir Karabükspor, Amasyaspor və yenə Kardemir Karabükspor kimi klublarda oynayıb. Daha sonra Qaziantepspora transfer oldu. Burada əvvəlki mövsümlərlə müqayisədə stabil matçlar oynayaraq böyük arzusu gerçəkləşdi və 2000–2001 mövsümünün transfer dövründə Beşiktaşa transfer oldu. Beşiktaşın 100-cü il çempion heyətində yer alıb. 2008–2009 mövsümündə o, Beşiktaşlı komanda yoldaşı İbrahim Toramanla dava edib və heyətdən kənarlaşdırılıb. Daha sonra hər ikisi bağışlandı, ancaq bu hadisədən sonra Beşiktaşda kapitanlığını itirdi. Mövsümün son həftəsində baş tutan "Dənizlispor " — "Beşiktaş" davasında məşqçi Mustafa Dənizli ona jest edərək yenidən kapitan sarğısını taxaraq çempion komandanın kapitanı kimi oyuna daxil edib. 100-cü ilində sağ ayağı ilə qol vurduğu Qalatasaray və bu mövsüm Fənərbaxça derbiləri və FC Barselona matçları 3–0, yüksək səviyyəli performansı ilə karyerasının ən yaxşı matçlarını keçirdi.
Turşu ədədi
Turşu ədədi - turşu, yaxud turşu qarışığının ekvivaleit kütləsini, həmçinin bəzi texniki və təbii məhlulların, sərbəst turşuların miqdarını xarakterizə edən kəmiyyət. Turşu ədədi götürülmüş 1 q maddənin neytrallaşmasına sərf olunan KOH-ın milliqramla miqdarına bərabərdir.
Gülmək
Gülüş — insanlarda ritmik olaraq diafraqma və digər tənəffüs orqanlarının eşidilə biləcək şəkildə fiziki hərəkəti. Bu hərəkət "ha-ha-ha" və ya "he-he-he" şəklindəki səslərin yaranması ilə nəticələnir. Gülüşün (qəhqəhənin) yaranması səbəbləri kimi qıdıqlanma formasında kənar mühit amilləri, yumorik hadisə və sözlər, düşüncələr göstərilir. Gülmək sevincin fiziki göstəricisi hesab olunur. Amma insanlar bəzi halldan utanmaq, təəccüblənmək kimi fərqli emosiyalarda belə gülürlər. Bəzən isə nəzakət xatirinə saxta gülüşlər baş verə bilər. İnsanlardan başqa bəzi primatlar da (şimpanze, qorilla, oranqutan) qəhqəhəyə bənzər səslər çıxarırlar. Ən çox sevinc, xoşbəxtlik, rahatlıq və s. kimi bir sıra müsbət emosional vəziyyətlərdə müşahidə olunsa da bəzi hallarda bunun əksinə xəcalət, təəccüb və ya əks duyğu halları zamanı da ortaya çıxa bilir.
Silmək
Silmək – verilənlərin, adətən, disk və ya lent kimi yaddasaxlama qurğusundan geri qaytarılması mümkün olmayan uzaqlaşdırılması. Müəyyən sahənin silinməsi, bir qayda olaraq, orada olan informasiyanın sıfırlarla və ya başqa boş simvollarla əvəzlənməsi yolu ilə həyata keçirilir. Hesablama texnikasında silmənin (erase) heç də uzaqlaşdırma (DELETE) ilə ekvivalent olması vacib deyil. Adətən, uzaqlaşdırma, sadəcə, əməliyyat sisteminə göstərilən verilənlərin və ya faylin əhəmiyyət daşımadığını xəbər verir, ancaq uzaqlaşdırılmış faylın diskdə tutduğu yer (sahə) əməliyyat sisteminə başqa məqsədlər üçün gərəkli olanadək həmin verilənlərə müraciət etmək mümkündür. Buna görə də uzaqlaşdırılmış verilənlərin yerinə (tutduğu sahəyə) yeni informasiya yazılmamışsa, həmin faylı “geri qaytarmaq” (UNDELETE) mümkün olur.
Aparat kəsilməsi
Aparat kəsilməsi (ing. Hardware interrupt) – “diqqət yetirilməsi haqqında xahiş”; kompüterin aparat vasitələri və ya proqram təminatı tərəfindən mikroprosessor üçün hazırlanıb verilən siqnal. Bəzən tələ (TRAP) də adlandırılan kəsilmə mikroprosessoru məcbur edir ki, yerinə yetirilən əməliyyatı durdursun, özünün cari durumunu yadda saxlasın və idarəetməni xüsusi prosedura – xüsusi komandalar yığınını yerinə yetirən kəsilmələr emalçısına (INTERRUPT HANDLER) versin. Kəsilmələrə çoxlu səbəblər ola bilər: bunlar qurğuların xidmət üçün sorğusu, verilənlərin emalındakı xətalar, mümkün olmayan əməllərin yerinə yetirilməsinə cəhd və (nadir hallarda) yaddaşla bağlı yaranan problemlər və ya sistemin bəzi çox vacib komponentlərinin sıradançıxma təhlükələri ola bilər. Mikroprosessor bir çox mənbədən kəsilmə haqqında sorğu aldıqda onların emal olunma ardıcıllığı “çözmə” səviyyələrinin iyerarxiyasına görə müəyyən olunur. Proqram kəsilmə mexanizmindən istifadə etməklə əməliyyat sisteminin funksiyalarına, məsələn, faylların açılması, oxunması və qapadılması funksiyalarına müraciət edə bilər. Digər tərəfdən, kəsilmə, mikroprosessor ilə kompüter sistemini əmələ gətirən başqa elementlər arasında rabitə vasitəsidir. Əgər daimi kəsilmə sorğuları axını hər hansı kritik vəzəyyətdə işi çətinləşdirir və ya əngəlləyirsə, onda proqram kəsilməni müvəqqəti olaraq bloklaya bilər ki, nəticədə lazım olan zaman müddətində mikroprosessor üzərində vahid nəzarətə nail ola bilsin. Aparat kəsilməsi ya klaviatura, disksürən və giriş-çıxış portları kimi xarici qurğular, ya da “daxildən” – mikroprosessor tərəfindən generasiya olunan kəsilmə növü. Qurğular xarici aparat kəsilmələri vasitəsilə kompüterin mikroprosessorunu onlara diqqət yetirməyə “çağırırlar”.
Cərəyanın kəsilməsi
Cərəyanın kəsilməsi(Blackout )– cərəyan şəbəkəsində gərginliyin sıfıra düşməsi halı; cərəyanın tam kəsilməsidir. Buna bir çox amillər, o cümlədən təbii fəlakətlər (qasırğa, zəlzələ) və ya elektrik cihazlarındakı (transformatorda, elektrik ötürücü xətlərdə) sıradançıxmalar səbəb ola bilər. Cərayanın kəsilməsi kompüteri korlaya bilər; bu, qəza (kəsilmə) anında kompüterin hansı vəziyyətdə olmasından asılıdır. Bu halda bütün saxlanılmamış məlumatlar biryolluq itəcək. Ən təhlükəli hal isə diskdən məlumatların oxunması və ora yazılma anında cərəyanın kəsilməsi halında yaranır. Belə arzuolunmaz hallardan qorunmağın yolu isə kəsilməz qida mənbələrindən (UNINTERRUPTIBLE POWER SUPPLY, UPS) istifadə etməkdir. İsmayıl Calallı (Sadıqov), “İnformatika terminlərinin izahlı lüğəti”, 2017, “Bakı” nəşriyyatı, 996 s.
Fileto (kəsilmiş)
Fileto və ya fileto (İngiltərə: / ˈfɪlɪt /, US: / fɪˈleɪ /; Fransız dilindən filet, [filɛ] kimi tələffüz olunur) sümüksüz bir ət və ya balıq parçasıdır. Fileto tez -tez bir çox mətbəxin əsas tərkib hissəsidir və bir çox yeməklər, maddələrdən biri olaraq müəyyən bir növ filetonun istifadəsini tələb edir. == Ət == == Mal əti == ABŞ -da mal əti vəziyyətində, bu termin ən çox mal əti, xüsusilə də fileto mignonuna aiddir. == Toyuq əti == Toyuq filesi, bəzən tenderloin olaraq da adlandırılır, toyuq və ya dəvəquşu bifteklərindən hazırlanan xüsusi bir ət parçasıdır. [1] Bir toyuqun hər birinin uzunluğu bir neçə düym və eni təxminən 1 düym olan iki fileto var. Onlar sternumun mərkəzindəki göğüs qəfəsinin üstündəki ana sinə altında yatırlar. Əsas döşdən bir iplə ayrılırlar. Toyuq filesi bir çox ölkələrdə supermarketlərdə çox populyardır. Əsas döşə yapışdırıla bilər və ya ümumiyyətlə dörd və ya daha çox fileto paketində döşdən ayrılar. == Balıq əti == Fileto hazırlayarkən, pulcuqları balıqdan çıxarmalısınız.
Kəsilmiş flomoides
Kəsilmiş flomoides - (lat. Phlomoides laciniata) == Qısa morfoloji təsviri == Çoxillik, hündürlüyü 50-100 sm olan, kökyanı boyuncuğu ağ yunlu bitkidir. Gövdəsi sadə, bəzən az budaqlıdır; adətən ağ uzun tükcüklərlə sıx yunlu şəkildə tükləşmişdir. Yarpaqları yaşıl, az tüklənmişdir, uzun saplaqlı kökyanı yarpaqları lələkvari və ya ikiqat lələkvari parçalanmışdır. Gövdə yarpaqları qısa saplaqlı, yuxarıdan kəsilmiş diş-dişlidir. Uzun sıx sünbülvari çiçəkqrupu əmələ gətirən çiçəkləri çox çiçəkli köbələrdədir. Kasacığı 16–20 mm, boruvari–zəngvari, sıx ağımtıl-yunludur. Tacı 30 mm qədər uzunluqda; yuxarı dodağı ağ bizşəkillidir, içi qıraqdan ağ ipəkvaridir; aşağı dodağı üç dilimli, orta dilimi əlvan sarı, yan dilimləri limonvari-sarıdır. Fındıqca sıx şırımlıdır. == Yayılması == Böyük Qafqazın bütün rayonlarında arandan orta dağ qurşağına kimi yayılmışdır.
Nəsil kəsilməsi
Nəsil kəsilməsi — bioloji və ekoloji amillər nəticəsində bir növə və ya cinsə aid məxluqun varlığına son qoyulması, biosferin "daralması". Bir növə aid son canlının ölümü həmin növün nəslinin kəsilməsi kimi qəbul edilir. Amma nəslin davam etməsi üçün bir növə aid edilən canlıların sayının kəskin azalması da onları nəsli kəsilən növlərə aid etməyə imkan verir.
Kəsişmə sindromu
Kəsişmə sindromu – iltihab nəticəsində saidin distal nahiyəsində mil sümüyündən 6–8 sm proksimal hissədə yaranan ağrı və ödem.
Əhməd əfəndi
Əhməd əfəndi — məşhur xınalıqlılardan biri. Fitri istedada malik Əhməd əfəndi XIX əsrdə Qafqazın müxtəlif dini mərkəzlərində — Tiflisdə, Dağıstanda, Teymurxanşurada (indiki Vladiqafqaz) yaşayıb fəaliyyət göstərmişdir. Hal-hazırda Xınalıq kəndində Əhməd əfəndinin türbəsi vardır.
Əhməd Əmir-Əhmədi
Əhməd Əmir-Əhmədi (1884, İsfahan – 1965, Tehran) — İran Kazak diviziyasının generalı, hərbi nazir. Əhməd Əmir-Əhmədi 1884-cü ildə İsfahanda doğulmuşdu. Atası Tağı ağa Əmir-Əhmədi Qacar ordusunda briqada generalı (sərtib) rütbəsinədək yüksəlmişdi. Özü də İran Kazak diviziyasında xidmət etmişdi. Rza xan və Seyid Ziyaəddin Təbatəbai ilə bərabər Əhməd şah Qovanlı-Qacarın devirilməsində önəmli rol oynamışdı. Rza şah Pəhləvidən sepahbud (general-mayor) rütbəsi almışdı. O, 1942-ci ildə Əli Süheylinin və 1948-ci ildə Əbdülhüseyn Hazhırın kabinəsində hərbi nazir postunu tutmuşdu. Məclisin üzvü idi. Rza şahın hakimiyyətində Əhməd Əmir-Əhmədi yeganə adam idi ki, ondan qorxurdular və hörmət edirdilər. Bacısı Püsyan ailəsində ərdə idi.
Baş dərisinin üzülməsi
Baş dərisinin üzülməsi (ing. Scalp) — ölü və ya sağ insanların baş dərilərinin ön və arxa hissədən kəsici-deşici alətlə üzülməsi. Bu üsuldan daha çox Şimali Amerikanın yerli aborigen xalqı tərəfindən istifadə edilmişdir. Şimali Amerikada toplum tərəfindən qəbul edilmiş düşüncəyə görə Hindilər müharibədə öldürdükləri düşmənlərindən qənimət əldə etmək niyyəti ilə onların baş dərilərini üzərək özləri ilə aparırdılar. Ancaq iddia edilənin əksinə olaraq bu üsulun istifasinə Hindli döyüşçülər arasında nadir hallarda rast gəlinirdi. Bu adət Şimali Amerikada hələ formalaşmamışdan iki əsr əvvəl Avropada mövcud idi. Xüsusilə Fransa və Böyük Britaniyada edam cəzasına məhkum edilmiş şəxslərin edamından əvvəl müxtəlif işgəncələr verilir və yaşanan işgəncə prosesində məhkum edilən şəxsin baş dərisi üzülürdü. Bəzi Meksika və ABŞ (Arizona) ştatlarında keçmişdə düşmən münasibətlərdə olduqları qızıldərili skalpları üçün düşmənləri tərəfindən ödəmələr belə edilmişdir. ABŞ-də Hindulara qarşı sistemli şəkildə həyata keçirilən Hindu qətliamları zamanı hindular tərəfindən ağdərililərin baş dəriləri üzülmüşkən, 1782-ci ildə baş vermiş Gnadenhütten qətliamı zamanı ağdərililər tərəfindən Lenape hinduların baş dəriləri üzülmüşdür. == Tarixi == Baş dərisinin üzülməsinin ilkin nümunələrinə Şimali Amerika və Avropada hələ eramızdan əvvəlki, illərdə rast gəlinmişdir.
Gözqamaşdırıcı zülmət (roman)
Gözqamaşdırıcı zülmət (alm. Sonnenfinsternis‎) — Artur Kostlerin romanı. Əslən yəhudi olan ingilis yazıçısı Artur Köstler "Gözqamaşdırıcı zülmət" romanını yazmağa 1938-ci ildə başlasa da, həbslər və düşərgələrə göndərilməsi səbəbindən əsər üzərində işini həbsxanada bitirib və roman Köstler hələ azadlığa çıxmazdan əvvəl, 1940-cı ildə nəşr olunub. Sonra yazıçı Fransa paytaxtı Parisdən, nasistlərdən qaçmalı olub. Qaçdığı zaman romanın yeganə alman dilli nüsxəsi itirilib və 75 il sonra alman ədəbiyyatşünası Mattias Vesselin nəşriyyatlardan birinin arxivində əsərin əlyazması tapılıb. Köstlerlə yaxın münasibətdə olan Dafna Hardi Henrion romanı ingilis dilinə tərcümə edir və onu Londona göndərir. Bundan sonra əsər 30 dilə tərcümə olunur. 1948-ci ildə əsər müəllifin özü tərəfindən ingilis dilli versiyadan alman dilinə də tərcümə olunub. Ancaq Köstler 1960-cı ildə bununla bağlı belə bir fikir bildirir: "Gözqamaşdırıcı zülmət" romanımı özüm alman dilinə tərcümə etdim, amma romanın orijinalında olan spontanlığının itməsi hissi məni tərk etmir". Belə ki, əvvəlcə "Rubaşov" adlı alman dilində olan əlyazması itkin düşür.
Əhməd xan Əmir-Əhmədi
Əhməd Əmir-Əhmədi (1884, İsfahan – 1965, Tehran) — İran Kazak diviziyasının generalı, hərbi nazir. Əhməd Əmir-Əhmədi 1884-cü ildə İsfahanda doğulmuşdu. Atası Tağı ağa Əmir-Əhmədi Qacar ordusunda briqada generalı (sərtib) rütbəsinədək yüksəlmişdi. Özü də İran Kazak diviziyasında xidmət etmişdi. Rza xan və Seyid Ziyaəddin Təbatəbai ilə bərabər Əhməd şah Qovanlı-Qacarın devirilməsində önəmli rol oynamışdı. Rza şah Pəhləvidən sepahbud (general-mayor) rütbəsi almışdı. O, 1942-ci ildə Əli Süheylinin və 1948-ci ildə Əbdülhüseyn Hazhırın kabinəsində hərbi nazir postunu tutmuşdu. Məclisin üzvü idi. Rza şahın hakimiyyətində Əhməd Əmir-Əhmədi yeganə adam idi ki, ondan qorxurdular və hörmət edirdilər. Bacısı Püsyan ailəsində ərdə idi.
Kürəkənzadə Əhməd Əfəndi
Kürəkənzadə Əhməd Əfəndi (1665, Konstantinopol – 1741, Bəyoğlu, İstanbul ili) — Osmanlı alimi və şeyxülislamı. Övladlarından Feyzullah Əfəndi Sultan Osman və Sultan Mustafa səltənətlərində şeyxülislamlığa gətirilmişdir. == Həyatı == 1665-ci ildə İstanbulda dünyaya gəlmişdir. Atası Anadolu başqazısı Çankırılı Mustafa Rasih Əfəndi, ana babası isə dövrün şeyxülislamı Minkarizadə Yəhya Əfəndidir. Bu səbəblə o da, atası kimi Kürəkənzadə təxəllüsü ilə anılmışdır. Uşaqlıq illərində başda atası olmaqla, dövrün tanınmış alimlərindən dərslər aldı. Dini təhsilini tamamladıqdan sonra müxtəlif mədrəsələrdə müdərris olaraq fəaliyyət göstərdi və ardından qazı olaraq Salonikiyə təyin edildi. Bir müddət burda xidmət etdikdən sonra vəzifədən alındı. Çox keçmədən 1700-cü ildə Bursa, 1706-cı ildə İstanbul qazısı, 1710-cu ildə isə Anadolu başqazısı təyin edildi. 15 ay davam edən bu vəzifəsinin ardından vəzifədən alındı.
Muid Əhməd Əfəndi
Muid Əhməd Əfəndi (1577 – 25 aprel 1647) — Osmanlı dövlət xadimi, şair, müdərris, qazı və şeyxülislam. Doğum yeri haqqında dəqiq məlumat olmasa da, atasının adının Yusif olduğu məlumdur. Təhsil almaq üçün İstanbula gələn Əhməd Əfəndi Xınalızadə Fəhmi Mehmed Əfəndidən dərslər almış, təhsilini bitirdikdən sonra onun köməkçisi kimi xidmət göstərmişdir. Buna görə də tarixi mənbələrdə Muid (yəni köməkçi, yardımçı) Əhməd Əfəndi olaraq qeyd olunur. 1595-ci ilin fevral ayından başlayaraq müxtəlif mədrəsələrdə müdərris kimi fəaliyyət göstərdi. 1612-ci ilin dekabrında Əhməd Paşa, 1614-cü ilin iyununda Mahmud Paşa, 1618-ci ilin dekabr ayında Qəzənfər ağa, 1620-ci ilin martında Sahn-ı Səman, 1622-ci ilin iyun ayında Hasəki sultan, 1623-cü ilin mayında Yavuz Sultan Səlim, 1624-cü ilin aprelində isə Süleymaniyyə mədrəsələrində xidmət göstərmişdir. Ardından 1626-cı ilin mart ayında Dəməşq qazısı, 1629-cu ilin oktyabr ayında Qahirə qazısı, 1633-cü ilin sentyabr ayında Ədirnə və 1635-ci ilin dekabr ayında İstanbul qazısı təyin olundu. 1637-ci ilin aprel ayında Anadolu başqazısı təyin olunan Əhməd Əfəndi IV Muradın Bağdad səfərinə qatılmaq üzrə hazırlıq görsə də, baş verən bəzi hadisələr səbəbilə bu səfərə qatıla bilmədi. Şeyxülislam Yəhya Əfəndi ilə aralarında yaranan bir məsələyə IV Murad qarışmış, ancaq Əhməd Əfəndi padşahın müsahibi Hüseyn Paşaya sərt cavab verərək geri çevirmişdir. Bunun ardından vəzifəsindən azad edilən Əhməd Əfəndi Belqrada sürgün edildi.
Eşitmək
Eşitmə və ya duyma — canlıların ətraflarında meydana gələn səsləri eşitmə orqanları vasitəsilə qavramasıdır.
Əhməd Əfəndi Zövqi
Əhməd Əfəndi (tam adı: Molla İbrahimxəlil Məhəmməd oğlu, d. XIX əsr, Şəki, Baş Göynük k. - ö. 1867, Şəki) — şair. == Haqqında == Qazı Molla Əhməd Əfəndi XIX əsrdə Şəkinin Baş Göynük kəndində anadan olub və qazı seçilib. Əhməd Əfəndi şair kimi də tanınıb. Şəxsiyyəti və yaradıcılığı haqqında ilk məlumatı böyük ədəbiyyatşünas Salman Mümtaz vermişdir: Əhməd Əfəndi Zövqi 1867-ci ildə vəfat edib.
Əhməd Əfəndi türbəsi
Əhməd Əfəndi türbəsi — Azərbaycanın Quba rayonunda yerləşən Xınalıq kəndində türbə. == Tarixi == Türbə Əhməd Əfəndi adlı islam aliminə həsr edilmişdir. Əhməd Əfəndi ərəb dilini bilirdi, "Quran" dərsləri demişdir. O, XIX əsrdə Qafqazın müxtəlif dini mərkəzlərində – Tiflisdə, Dağıstanda, Teymurxanşurada (indiki Vladiqafqazda) yaşayıb fəaliyyət göstərmişdir. Bu, Xınalıq kəndindəki türbələr arasında ən sonuncu tikilən türbədir. Aşağı məhəllə qəbiristanlığında yerləşən Əhməd Əfəndi türbəsinin tarixi XIX əsrin sonu–XX əsrin əvvəllərinə aid olunur. Əvvəllər qəbrin üstündə türbə olmamışdır.
Əhməd Əhmədli