Lüğətlərdə axtarış.

Axtarışın nəticələri

OBASTAN VİKİ
Riyaziyyat
Riyaziyyat (yun. μάθημα, máthēma, "bilik, elm, öyrənmək") — ədədlər (hesab və ədədlər nəzəriyyəsi), düsturlar və əlaqəli strukturlar (cəbr), fiqurlar və fəzalar (həndəsə), kəmiyyətlər və onların dəyişmələri (riyazi analiz) kimi mövzuların öyrənilməsini əhatə edir. Onun dəqiq əhatə dairəsi və ya epistemoloji statusu haqqında ortaq razılaşma yoxdur. Riyaziyyat sözünün anlamı (ərəbcə الرياضيات) ərəb dilində riad (رياض) kimi oxunan və yaşıllığı olan sulu torpaq mənasını verən sözündən irəli gəlir, ərəblərin yaşadıqları yerlərdə torpaq sahələrin müəyyən edilməsi ilə onların suvarılması üçün gərək gələn suyun miqdarının hesablanmasında istifadə edilmiş bilik və bacarıqlar toplusuna deyilmişdi. Riyazi fəaliyyətin əsas hissəsi abstrakt (mücərrəd) obyektlərin xassələrini aşkarlamaqdan və isbat etməkdən (saf mühakimə yolu ilə) ibarətdir. Bu obyektlər ya təbiətdən təcridetmə yoluyla (məsələn, natural ədədlər və ya xətlər), ya da (müasir riyaziyyatda) aksiomlar adlanan əsas xassələrlə müəyyən edilən abstrakt varlıqlardır. İsbat bəzi deduktiv qaydaların artıq məlum olan nəticələrə, o cümlədən qabaqcadan isbatlanmış teoremlərə, aksiomlara və (təbiətdən təcridetmə halında) nəzərdən keçirilən nəzəriyyənin həqiqi başlanğıc nöqtələri hesab edilən bəzi əsas xassələrə ardıcıl tətbiqindən ibarətdir. İsbatın nəticəsi teorem adlanır. Bir sıra elmlərdə hadisələrin modelləşdirilməsi üçün riyaziyyatdan geniş istifadə olunur. Bu, eksperimental qanunlardan kəmiyyət nəticələrini çıxarmağa imkan yaradır.
Ali riyaziyyat
Ali riyaziyyat — ali məktəblərdə riyaziyyatın mühəndislik və başqa texniki ixtisaslar üçün riyazi əsasını öyrədən hissəsidir. Sırf riyaziyyat ixtisası üzrə təhsil alanlardan fərqli olaraq burada mühəndislər riyaziyyatın praktikada tətbiqi üzrə məlumat alırlar. Onun həcmi ali məktəbdən məktəbə fərqlənir. Ali riyaziyyat aşağıdakı sahələri əhatə edir: Analitik həndəsə Riyazi analiz Differensial hesablama İnteqral hesabı Müstəvidə və fəzada xətlər Sonsuz sıralar Çoxparametrli differensial və inteqral funksiyaları Diferensial tənliklər == Mənbə == R.Məmmədov. Ali riyaziyyat.
Bölmə (riyaziyyat)
Bölmə (bölmə əməli) — 4 sadə hesab əməlindən biri. Vurmanın tərsidir.Ədədin qalıqsız bölündüyü hər bir ədəd həmin ədədin böləni adlanır. Bölmə elə əmələ deyilir ki, nəticədə alınan ədədi bölən ədədə vurduqda bölünən ədəd alınır. Bölmənin komponentləri bölünən, bölən və qismətdir. Məsələn, 8:2=4 bərabərliyində 8 - bölünən, 2 - bölən, 4 - isə qismət adlanır.
Differensial (riyaziyyat)
Diferensial funksiyanın xətti artımını təsvir edir. Bu anlayış istiqamətdən asılı olaraq törəmə ilə sıx bağlıdır. Funksiyanın f {\displaystyle f} diferensialı d f {\displaystyle df} , onun x {\displaystyle x} nöqtəsindəki qiyməti d x f {\displaystyle d_{x}f} ilə işarə olunur. Diferensialın sadə şəkildə izahı belədir: Verilmiş f ( x ) {\displaystyle f(x)} funksiyasının dəyişmə tezliyi onun arqumentinin ( x {\displaystyle x} ) dəyişmə tezliyindən asılıdır. Diferensial anlayışı XVII-XVIII əsrlərdə diferensial hesablarının yaranması zamanı daxil edilmişdir. XIX əsrdən başlayaraq analiz A.L.Kauçi və Karl Vayerstrass tərəfindən sərhəd qiymətləri əsasında yenidən işlənərək riyazi cəhətdən daha düzgün qurulmuşdur. Bununla diferensial anlayışı öz ilkin əhəmiyyətini itirir. Hazırda diferensial d x {\displaystyle dx} yalnız məhdud halda tətbiq olunur. == Tərifi == y = f ( x ) {\displaystyle y=f(x)} funksiyası ( a , b ) {\displaystyle (a,b)} intervalında diferensiallanandır. Δ y = f ′ ( x ) Δ x + ( Δ x ) Δ x {\displaystyle \Delta y=f'(x)\Delta x+(\Delta x)\Delta x} Diferensiallanan y = f ( x ) {\displaystyle y=f(x)} funksiyasının x {\displaystyle x} nöqtəsindəki artımının baş hissəsinə, yəni Δ x {\displaystyle \Delta x} -dən xətti asılı olan f ′ ( x ) Δ x {\displaystyle f'(x)\Delta x} ifadəsinə onun x {\displaystyle x} nöqtəsində diferensialı deyilir.
Diskret riyaziyyat
Diskret riyaziyyat — Kökündən diskret olan riyazi strukturları ilə maraqlanan və davamlılıq ehtiva etməyən mövzularını əhatə edən riyaziyyat sahəsidir. Belə strukturlara sonlu qruplar, sonlu qraflar, eləcə də bəzi riyazi modellərin məlumatların çeviriciləri, sonlu maşınlar, Turing maşınları, və s. kimi strukturlar ilə təsnif edilə bilər. Bunlar sonlu (məhdud) xarakterli strukturların nümunələridir. Onların öyrənilməsi ile meşqul olan diskret riyaziyyat bölməsi - sonlu riyaziyyat adlanir. Bəzən bu anlayışı diskret riyaziyyatın sahələrinə qədər genişləndirirlər. Bu sonlu strukturlar ilə yanaşı, diskret riyaziyyat bəzi cəbr sistemləri, sonsuz qraflar, ədədi sxemləri müəyyən bir növünü və s. bölməlerin öyrənilməsi də aiddir. Sinonim kimi bəzən diskret təhlili termini istifadə edilir.
Dəyişən (riyaziyyat)
Dəyişən — öz qiymətini dəyişən fiziki və abstrakt sistemlərə xas olan əlamətdir. Məsələn, ağacın boyu, insanın yaşı, yerin məkanı və s. Riyaziyyatda dəyişəni adətən hərflərlə işarə edirlər. Məsələn, f ( x ) = x + 5 {\displaystyle f(x)=x+5} o deməkdir ki, f {\displaystyle f} funksiyası x {\displaystyle x} dəyişənindən asılıdır.
Funksiya (riyaziyyat)
Funksiya — X {\displaystyle X} çoxluğunun hər bir elementinə qarşı Y {\displaystyle Y} çoxluğunun bir elementini uyğun qoyan F {\displaystyle F} münasibəti. Bu zaman X {\displaystyle X} çoxluğu F {\displaystyle F} funksiyasının təyin oblastı, Y {\displaystyle Y} çoxluğu isə qiymətlər oblastı adlanır. F {\displaystyle F} funksiyasının X {\displaystyle X} çoxluğunu Y {\displaystyle Y} çoxluğuna qarşı qoyması aşağıdakılardan hər hansı biri ilə işarə olunur: F : X → Y {\displaystyle F\colon X\to Y} ; X ⟶ F Y {\displaystyle X{\stackrel {F}{\longrightarrow }}Y} ; y = F ( x ) {\displaystyle y=F(x)} ; F : x ↦ y {\displaystyle F\colon x\mapsto y} ; x ⟼ F y {\displaystyle x{\stackrel {F}{\longmapsto }}y} . f(x)=Burada x dəyişəni asılı olmayandır, y isə asılı dəyişəndir. Funksiya 3 üsulla verilir:analitik, cədvəl və qrafik. Tək funksiya Funksiya f(-x)=-f(x) şərtini ödəyərsə belə funksiyaya tək funksiya deyilir. Məsələn y=3x funksiyası tək funksiyadır. Qeyd: Tək funksiyanın qrafiki koordinat başlanğıcına, yəni (0,0) nöqtəsinə nəzərən; cüt funksiyanın qrafiki ordinat oxuna, yeni Oy oxuna nəzərən simmetrik olur. Qeyd: Triqonometrik funksiyaların təkliyi və ya cütlüyü: sin(-x)=-sinx (tək) cos(-x)=cosx (cüt) tg(-x)=-tgx (tək) ctg(-x)=-ctgx (tək) 3) Funksiyanın artması və azalması: X çoxluğunda arqumentin böyük qiymətinə funksiyanın böyük qiyməti uyğun gələrsə, f funksiyasına bu çoxluqda artan, arqumentin böyük qiymətinə funksiyanın kiçik qiyməti uyğun gələrsə, f funksiyasına bu çoxluqda azalan funksiya deyilir. Yeni, x1, x2€X şərtində x1<x2 , f(x1)<f(x2) isə, funksiya artan olur.
Hiperbola (riyaziyyat)
Hiperbola (yun. ύπερβολή — yuxarıdan, ύπερ — atmaq) — tərs mütənasibliyin qrafikinə verilən addır. Tərs mütənasiblik düsturuy = k ÷ x == Asimptotlar == Hiperbolanın asimptotları: x 2 a 2 − y 2 b 2 = 1 {\displaystyle {\frac {x^{2}}{a^{2}}}-{\frac {y^{2}}{b^{2}}}=1} Hiperbola 2 asimptotdan ibarətdir: x a ± y b = 0 {\displaystyle {\frac {x}{a}}\pm {\frac {y}{b}}=0} == Xarakteristikası == Hiperbola Parabolanın tərsidir. Hiperbola iki budaqdan ibarətdir. k > 0 olduqda hiperbolanın budaqları I və III rüblərdə, k < 0 olduqda isə hiperbolanın budaqları II və IV rüblərdə yerləşir. Hiperbolanın xarakteristikasına aşğıdakı ifadələr aiddir: c 2 = a 2 + b 2 {\displaystyle c^{2}=a^{2}+b^{2}\,} . ε = c / a {\displaystyle \varepsilon =c/a\,} . b 2 = a 2 ( ε 2 − 1 ) {\displaystyle b^{2}=a^{2}\left(\varepsilon ^{2}-1\right)\,} . r p = a ( ε − 1 ) {\displaystyle r_{p}=a\left(\varepsilon -1\right)\,} . a = p ε 2 − 1 {\displaystyle a={\frac {p}{\varepsilon ^{2}-1}}\,} .
Limit (riyaziyyat)
Limit (lat. Limes - uc nöqtə) — funksiyanın limiti cəbr analizinin əsas anlayışlarından biridir. İlk dəfə yunan filosofları Arximed və Evklidin əsərlərində rast gəlinir. Müasir riyaziyyatda isə ingilis alimi İsaak Nyuton tərəfindən işlədilmişdir. == Əsas limitlər == lim x → ∞ ( 1 + 1 x ) x = e {\displaystyle \lim _{x\to \infty }(1+{\frac {1}{x}})^{x}=e} lim x → 0 ( 1 + x ) k x = e k ( k = 1 : x ) {\displaystyle \lim _{x\to 0}(1+x)^{\frac {k}{x}}=e^{k}(k=1:x)} lim x → 0 cos ⁡ ( x ) = 1 {\displaystyle \lim _{x\to 0}\cos(x)=1} lim x → 0 tan ⁡ ( x ) x = 1 {\displaystyle \lim _{x\to 0}{\frac {\tan(x)}{x}}=1} == Limitin bəzi xassələri == lim n → ∞ ( a n + b n ) = lim n → ∞ a n + lim n → ∞ b n . {\displaystyle \lim _{n\to \infty }(a_{n}+b_{n})=\lim _{n\to \infty }a_{n}+\lim _{n\to \infty }b_{n}.} lim n → ∞ ( a n − b n ) = lim n → ∞ a n − lim n → ∞ b n . {\displaystyle \lim _{n\to \infty }(a_{n}-b_{n})=\lim _{n\to \infty }a_{n}-\lim _{n\to \infty }b_{n}.} lim n → ∞ ( a n . b n ) = lim n → ∞ a n . lim n → ∞ b n . {\displaystyle \lim _{n\to \infty }(a_{n}.b_{n})=\lim _{n\to \infty }a_{n}.\lim _{n\to \infty }b_{n}.} lim n → ∞ a n b n = lim n → ∞ a n lim n → ∞ b n .
Norma (riyaziyyat)
Norma — vektor fəzasında verilmiş funksionaldır, vektorun uzunluğu anlayışının ümümləşməsidir və ya ədədin mütləq qiymətidir.
Normal (riyaziyyat)
Normal — düz səthə və bu səthdə kəsişən bütün düz xətlərə ortoqonal (perpendikulyar) olan vektor. Bu nöqtə vektor normalı adlanır hansı ki,— vahid vektordur və bu nöqtəyə çəkilən düz xətt normalın istiqamətinə paraleldir. Hamar səthdə ixtiyari nöqtə üçün yalnız istiqaməti ilə fərqlənən iki vektor normalı tətbiq etmək olar. Əgər səthdə normal vektorların dövri sahəsini təyin etmək mümkündürsə, onda bu sahə səthin oriyentasiyasını təşkil edir (yəni tərəflərdən birini ayırır). Əks halda, səth oriyentasiya olunmamış adlanır. Analoji olaraq, bu nöqtədəki əyri vektor normalı kimi təyin edilir.
Nöqtə (riyaziyyat)
Nöqtə — həndəsənin əsas elementlərindən biridir. Onun fəzada heç bir ölçüsü yoxdur. Həndəsəyə aksiom baxımından yaxınlaşdıqda (Sintetik həndəsə) nöqtə ilə bərabər düz xətt də eyni səviyyədə çıxış edir. Analitik və difersial həndəsədə isə bütün başqa obyektlər nöqtələr çoxluğu kimi təsvir olunurlar. Yunan filosofu Evklid e.ə. 300-ci ildə nöqtəni bölünməyən bir hissə kimi təsvir etmişdir. Nəzəri cəhətcə nöqtənin təsdiqinin heç bir əhəmiyyəti yoxdur. Müasir aksiom sistemləri isə bunu inkar edirlər. Məsələn, Hilbert aksiom sisteminə görə həmişə iki nöqtə bir xətti əmələ gətirir. Proyeksiya müstəvisində nöqtə və düz xətt amlayışları hətta bir-biri ilə dəyişilə bilər.
Qismət (riyaziyyat)
Qismət - Bölmənin üçüncü komponenti. Ədədi ədədə böldükdə alınan ədəd bu ədədlərin qisməti adlanır.
Qraf (riyaziyyat)
Qraf (riyaziyyat) — (ing.graph, ru. граф) — proqramlaşdırmada: öz aralarında ixtiyari qaydada birləşmiş (tillər vasitəsilə) müəyyən sayda (sıfır da ola bilər) təpədən ibarət olan verilənlər strukturu. Qrafın istənilən iki təpəsi (düyün) tillə birləşdirilə və ya birləşdirilməyə bilər. Qrafın bütün təpələrinin birləşməsi vacib deyil, ancaq qrafın istənilən iki təpəsi arasında "yol" varsa, onda belə qraf rabitəli adlanır. Qrafin təpələrinin və tillərinin hər hansı altçoxluğuna altqraf deyilir. Qrafların çoxlu növləri vardır: çəkili qraflar – hər bir tilinə müəyyən əmsal (çəki) təyin olunur; yönəldilmiş (oriyentasiyalı) qraflar və ya diqraflar – hər bir tilin müəyyən istiqaməti olur, yəni til B təpəsindən A təpəsinə yox, A təpəsindən B təpəsinə gedir. 1. Qraflar 1.1 Əsas anlayışlar və qrafların növləri Riyaziyyat əşyaların məzmunu ilə yox, onların strukturu ilə əməliyyatlar aparır və onları tam verilənlər vasitəsilə təsvir edir. Əşyanın keyfiyyətləri və xüsusiyyətlərindən kənarlaşmaq həmin əşyanın bünövrəsini, onu ilk görünüşdə ondan fərqli digər əşyalarla bir sıraya qoymağa imkan verən ayırlmaz hissəsini ortaya çıxarmağa icazə verir. Qraflar nəzəriyyəsi riyaziyyatın məhz bu kənarlaşmaq prinsipi istifadə edilən bölməsidir — əşyanın nə olduğu vacib deyil, onun yalnız qraf olub-olmaması, yəni qraf üçün vacib olan keyfiyyətlərə malik olub-olmaması vacibdir.
Riyaziyyat Ensiklopediyası
Riyaziyyat Ensiklopediyası (The Encyclopedia of Mathematics (EOM))-onlayn viki şəklində riyaziyyat üçün pulsuz böyük arayış əsəridir. Bu əsər kitab və CD-ROM şəklində də mövcuddur.Bu ensiklopediya, Sovet Matematiçeskaya entsiklopediyasından (1977) tərcümə olunmuşdur ki, ilk İvan Vinoqradov tərəfindən rus dilində redaktə və nəşr edilmişdir.
Riyaziyyat fəlsəfəsi
Riyaziyyat fəlsəfəsi — riyaziyyatın fəlsəfi əsaslarını və problemlərini araşdıran elm fəlsəfəsinin bir hissəsi: ümumiyyətlə riyaziyyatın ontoloji, epistemoloji, metodoloji, məntiqi və aksioloji əsasları və prinsipləri, onun müxtəlif istiqamətləri, fənləri və nəzəriyyələri. Geniş mənada, riyaziyyat fəlsəfəsi riyazi ifadələrin mənasını və mücərrəd obyektlərin mahiyyətini öyrənmək üçün riyaziyyat "dilinin" semantik nəzəriyyəsinin qurulması ilə məşğul olur. Pifaqor kimi yunan riyaziyyatçıları mülahizələrin sübutu anlayışını işləyib hazırlamaqla, hər şeydən öncə riyaziyyatın prosedur və operasion tərəflərini inkişaf etdirmişlər. Yəni, riyazi sübut – aşkar aksiomlardan məntiqi olaraq ümumi əhəmiyyətə malik olan həqiqi nəticələrin alınmasından ibarətdir. Biz o sistemi aksiomatik-deduktiv sistem adlandırırıq ki, o, aksiomlardan, nəticə çıxarma qaydalarından və onların köməyi ilə alınmış mülahizələrdən (teorem) ibarətdir. B.e.ə. təxminən 300-cü illərdə İsgəndəriyyədə yaşamış Evklid bu nəzəri əsasa istinad edərək riyaziyyata dair dərslik yazmışdı, bu dərslik də öz əhəmiyyətini bizim günlərə qədər saxlamışdır. Bu dərslikdən Nyuton özünün fizikasında istifadə etmişdir, burada şərh olunan təfəkkür tərzini isə Dekart və digər filosoflar qədim təfəkkürün istənilən şəklinin idealı olaraq şərh etmişlər. Riyaziyyat // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.).
Sıra (riyaziyyat)
Sıra (riyaziyyat) — sonsuz ədədlər ardıcıllığının elementlərindən düzəldilmiş cəm. Sıra (riyaziyyat) iki baxımdam öyrənilir: riyazi analizdə; kompleks analizdə; В. А. Зорич. Глава III. Предел. § 1. Предел последовательности, Математический анализ, часть I, М, Наука, 1981, стр.104-114,стр.544, Ю. С. Богданов — «Лекции по математическому анализу» — Часть 2 — Минск — Издательство БГУ им. В. И. Ленина — 1978.
Tətbiqi riyaziyyat
Tətbiqi riyaziyyat — riyazi metodların müxtəlif sahələrdə, o cümlədən fizika, mühəndislik, tibb, biologiya, biznes, kompüter elmləri və sənayedə tətbiqi. Beləliklə, tətbiqi riyaziyyat riyazi elmlə ixtisaslaşdırılmış biliyin birləşməsidir. "Tətbiqi riyaziyyat" termini, həmçinin riyaziyyatçıların riyazi modelləri formalaşdıraraq və öyrənərək praktiki problemlərin üzərində işlədiyi peşə ixtisasını təsvir edir. Keçmişdə praktiki tətbiqlər riyazi nəzəriyyələrin (hansı ki, sonralar mücərrəd anlayışların öyrənildiyi xalis riyaziyyatda araşdırma mövzusu olmuşdur) inkişafına təkan vermişdir. Beləliklə, tətbiqi riyaziyyatın fəaliyyəti xalis riyaziyyatdakı tədqiqatlarla sıx bağlıdır. Tarixən tətbiqi riyaziyyat, əsasən, tətbiqi təhlildən, xüsusən də, diferensial tənliklərdən; aproksimasiya nəzəriyyəsindən və tətbiqi ehtimaldan ibarət olmuşdur. Riyaziyyatın bu sahələri Nyuton fizikası ilə birbaşa əlaqəlidir və əslində, riyaziyyatçılar və fiziklər arasındakı aydın fərq 19-cu əsrin ortalarına qədər kəskin şəkildə vurğulanmamışdır. Bu tarix Amerika Birləşmiş Ştatlarına pedaqoji bir miras buraxmışdır: 20-ci əsrin əvvəllərinə qədər klassik mexanika kimi fənlər Amerika universitetlərinin əksəriyyətində Fizika kafedralarında yox, Tətbiqi Riyaziyyat kafedralarında öyrədilmişdir və axışqanlar mexanikasının hələ də Tətbiqi Riyaziyyat kafedralarında keçilməsi hallarına rast gəlinir. İndi maliyyə riyaziyyatı universitetlərdəki Riyaziyyat kafedralarında tədris olunur və bütövlükdə, tətbiqi riyaziyyatın bir qolu hesab olunur. Mühəndislik və kompüter elmləri kafedraları ənənəvi olaraq tətbiqi riyaziyyatdan istifadə edir.
Uzunluq (Riyaziyyat)
Uzunluq riyaziyyatda parça, yol və əyrilərin xassələrini səciyyələndirir. Əyrinin uzunluğu həmçinin "qövs uzunluğu" da adlanır. Əgər, uyğun olaraq ( a 1 , a 2 , a 3 ) {\displaystyle (a_{1},a_{2},a_{3})} , ( b 1 , b 2 , b 3 ) {\displaystyle (b_{1},b_{2},b_{3})} koordinatlarına malik A {\displaystyle A} və B {\displaystyle B} nöqtələri verilmiş R 3 {\displaystyle \mathbb {R} ^{3}} fəzaya aiddrsə, onda bu koordinatlar arasındakı A B {\displaystyle AB} parçasının uzunluğu Pifaqor teoreminə görə hesablanır: | A B | = ( a 1 − b 1 ) 2 + ( a 2 − b 2 ) 2 + ( a 3 − b 3 ) 2 {\displaystyle |AB|={\sqrt {(a_{1}-b_{1})^{2}+(a_{2}-b_{2})^{2}+(a_{3}-b_{3})^{2}}}} Müstəvi üzərində və ya fəzada yol iki və ya üç koordinat funksiyası ilə verilir: t ↦ ( x ( t ) , y ( t ) ) {\displaystyle t\mapsto (x(t),y(t))} uyğun olaraq t ↦ ( x ( t ) , y ( t ) , z ( t ) ) {\displaystyle t\mapsto (x(t),y(t),z(t))} , a ≤ t ≤ b {\displaystyle a\leq t\leq b} şərti daxilində. Hissə-hissə kəsilməyən yolun uzunluğu onun vektorunun inteqrallanması ilə əldə edilir: L = ∫ a b x ˙ ( t ) 2 + y ˙ ( t ) 2 d t {\displaystyle L=\int _{a}^{b}{\sqrt {{\dot {x}}(t)^{2}+{\dot {y}}(t)^{2}}}\,\mathrm {d} t} uyğun olaraq ∫ a b x ˙ ( t ) 2 + y ˙ ( t ) 2 + z ˙ ( t ) 2 d t . {\displaystyle \int _{a}^{b}{\sqrt {{\dot {x}}(t)^{2}+{\dot {y}}(t)^{2}+{\dot {z}}(t)^{2}}}\,\mathrm {d} t.} Müstəvidə verilmiş yol polyar koordinat sistemnində r ( φ ) {\displaystyle r(\varphi )} şəklind təyin olunmuşsa, onda φ 0 ≤ φ ≤ φ 1 {\displaystyle \varphi _{0}\leq \varphi \leq \varphi _{1}} üçün φ ↦ ( r ( φ ) cos ⁡ φ , r ( φ ) sin ⁡ φ ) {\displaystyle \varphi \mapsto (r(\varphi )\cos \varphi ,r(\varphi )\sin \varphi )} hasil qaydasından alınır d x d φ = r ′ ( φ ) cos ⁡ φ − r ( φ ) sin ⁡ φ {\displaystyle {\frac {\mathrm {d} x}{\mathrm {d} \varphi }}=r^{\prime }(\varphi )\cos \varphi -r(\varphi )\sin \varphi } və d y d φ = r ′ ( φ ) sin ⁡ φ + r ( φ ) cos ⁡ φ {\displaystyle {\frac {\mathrm {d} y}{\mathrm {d} \varphi }}=r^{\prime }(\varphi )\sin \varphi +r(\varphi )\cos \varphi } , bununla ( d x d φ ) 2 + ( d y d φ ) 2 = ( r ′ ( φ ) ) 2 + r 2 ( φ ) {\displaystyle \left({\frac {\mathrm {d} x}{\mathrm {d} \varphi }}\right)^{2}+\left({\frac {\mathrm {d} y}{\mathrm {d} \varphi }}\right)^{2}=\left(r^{\prime }(\varphi )\right)^{2}+r^{2}(\varphi )} . Buradan polyar koordinat siistemondə yolun uzunluğu belə tapılır: L = ∫ φ 0 φ 1 ( r ′ ( φ ) ) 2 + r 2 ( φ ) d φ {\displaystyle L=\int _{\varphi _{0}}^{\varphi _{1}}{\sqrt {\left(r^{\prime }(\varphi )\right)^{2}+r^{2}(\varphi )}}\,\mathrm {d} \varphi } .
Vasan (riyaziyyat)
Yapon riyaziyyatı və ya vasan (和算) – Edo dövründə ortaya çıxmış və Meyci islahatına qədər Yaponiyada istifadə olunmuş ənənəvi riyazi sistem. Meyci islahatından sonra Avropadan Yaponiyaya gətirilmiş riyazi sistem isə yosan (洋算) adlanır. Abak və bir neçə termindən başqa vasan hazırda Yaponiyada sadəcə tarixi mövzu hesab olunur. Formal riyaziyyat Yaponiyaya ilk dəfə VII-VIII əsrlərdə Çindən gəlib. Lakin vurma cədvəli kimi sadəcə riyazi vasitələr istisna olmaqla, bu biliklərin çoxu unudulub. XVI əsrdə yaponlar Çindən gələn və arifmetika formasında olan yeni riyazi biliklərlə tanış olublar. Bu yeni riyaziyyatın faydalı olacağını düşünən samuray və tacir siniflərinin dəstəyi ilə Yaponiyaya xas olan yeni riyazi sistem inkişaf etmişdir. Yapon riyaziyyatı haqqında olan və dövrümüzə qədər gəlib çatmış ən köhnə traktat 1620-ci ildə Mori Şiqeyoşi tərəfindən nəşr olunmuş "Bölmə haqqında yazılar" əsəridir. Onun tələbəsi olan Yoşida Mitsuyoşi tərəfindən 1627-ci ildə nəşr olunmuş "Cindoki" əsəri isə praktiki hesablamalarda geniş istifadə olunmuş, uzun müddət arifmetika dərsliklərinin başlıqları üçün termin olaraq işlədilmişdir. Həmin dövrdə Çindən gələn, çubuqlarla hesablama metodu olan tenqencutsu metodu sayəsində bir məchulu olan cəbri bərabərlikləri hesablamaq mümkün olmasa da, eynivaxtlı bərabərlikləri həll etmək üçün yorucu metod idi.
Xəta (riyaziyyat)
Xəta – müşahidə edilən və ya ölçülən nəticələrlə həqiqətdə olacaqlar arasında uyuşmazlıq. Riyaziyyatda və hesablama texnikasında “ERROR” ilə “MISTAKE” heç də eyni şey deyildir. Riyaziyyatda xəta (error), alınmış qiymət ilə verilmiş standart kəmiyyət arasındakı fərqdir; məsələn, statistikada xətalar qaçılmazdir və statistik verilənlər, adətən, “Seçmə yolu ilə aparılmış araşdırmanın xətası: ±5%” kimi qeydlərlə müşayət olunur. Kompüterlərin aparat və proqram təminatında xəta, ya hadisələrin gözlənilməz gedişinin nəticəsi, ya da mümkün olmayan və ya yolverilməz hərəkətləri həyata keçirmək cəhdinin nəticəsidir. Belə ki, veriliş xətası bir və ya bir neçə bitin təhrif olunmasını, “sıfıra bölmə” xətası isə proqramın sıfıra bölməni həyata keçirməyə cəhd etməsini göstərə bilər. Xətalar çox kiçik ola bilər, məsələn, disksürənin kilidi bağlı olmadıqda proqram diskdən istifadə edə bilmir; çox ciddi problemlər də ola bilər, məsələn, aparat təminatındakı nasazlıq və ya ciddi proqram xətası sistemin sıradan çıxmasına səbəb ola bilir. Praktik məsələlərin həllində bəzi hallarda kəmiyyətin dəqiq qiyməti ilə yanaşı onun təqribi qiymətindən də istifadə olunur. Tutaq ki, hər hansı kəmiyyətin dəqiq qiyməti A {\displaystyle A} , kəmiyyətin A {\displaystyle A} dəqiq qiymətə uyğun təqribi qiyməti isə a {\displaystyle a} ilə işarə olunmuşdur. Kəmiyyətin təqribi qiyməti onun dəqiq qiymətindən az fərqlənir və hesablama proseslərində ondan olunur. Bundan sonra dəqiq və təqribi ədəd uyğun olaraq A {\displaystyle A} və a {\displaystyle a} ilə işarə edəcəyik.
İfadə (Riyaziyyat)
Hər hansı bir dəyərə bərabərlənməmiş ya da bir dəyərlə sərhəd qoyulmamış riyazi fikrə ifadə deyilir. İfadələr sabitlərdən, dəyişənlərdən, əməliyyatlardan, funksiyalardan və digər riyazi simvollardan ibarət ola bilər . Ən sadə ifadə formalarından biri yazıla bilər: 0 + 0 {\displaystyle 0+0} Aşağıdakı kompleks ədəd də bir ifadədir: f ( a ) + ∑ k = 1 n 1 k ! d k d t k | t = 0 f ( u ( t ) ) + ∫ 0 1 ( 1 − t ) n n ! d n + 1 d t n + 1 f ( u ( t ) ) d t . {\displaystyle f(a)+\sum _{k=1}^{n}\left.{\frac {1}{k!}}{\frac {d^{k}}{dt^{k}}}\right|_{t=0}f(u(t))+\int _{0}^{1}{\frac {(1-t)^{n}}{n!}}{\frac {d^{n+1}}{dt^{n+1}}}f(u(t))\,dt.} Xətti ifadə: 8 x − 5 {\displaystyle 8x-5} . İkinci dərəcəli ifadə: 7 x 2 + 4 x − 10 {\displaystyle 7{{x}^{2}}+4x-10} . Rasional ifadə : x − 1 x 2 + 12 {\displaystyle {\frac {x-1}{{{x}^{2}}+12}}} . x + 3 * y = 6 bir ifadə deyil, bir bərabərlikdir. x + 3 * y <6 bir ifadə deyil, bərabərsizlikdir.
Əməliyyat (riyaziyyat)
Əməliyyat — çoxluğun (arqumentlərin) bir və ya daha çox elementini başqa bir elementə (qiymətə) təyin edən bir Xəritəçəkmə. "Əməliyyat" termini ümumiyyətlə tədqiqat üçün maraq xüsusiyyətlərinə malik olan bir dəstin özünə aid bəzi uyğunlaşmalarına tətbiq olunan "operator" ifadəsindən fərqli olaraq hesab və ya məntiqi əməliyyatlara tətbiq olunur. Əməliyyat f {\displaystyle f} — tərif sahəsi bir neçə dəstin birbaşa hasili olan bir xəritəçəkmədir. Riyazi olaraq, əməliyyat f : D ⊆ A × A × ⋯ × A ⏟ n → B {\displaystyle f\colon D\subseteq \underbrace {A\times A\times \cdots \times A} _{n}\to B} ( B {\displaystyle B} və A {\displaystyle A} eyni ola bilər).
Parça (riyaziyyat)
Düz xətt parçası – düz xəttin üst-üstə düşməyən 2 nöqtəsi və bu nöqtələr arasında qalan hissəsi adlanır. İki A {\displaystyle \;A} və B {\displaystyle \;B} nöqtələrini birləşdirən düz xətt parçası ya [ A ; B ] {\displaystyle [\;A;\;B]} , yaxud A B {\displaystyle \;A\;B} kimi işarə olunur. A {\displaystyle \;A} və B {\displaystyle \;B} nöqtələri A B {\displaystyle \;A\;B} düz xətt parçasının uc nöqtələri, onlar arasındakı nöqtələr isə daxili nöqtələri adlanır. A B {\displaystyle \;A\;B} düz xətt parçasının uc nöqtələri arasındakı məsafə onun uzunluğu adlanır və | A B | {\displaystyle \;|AB|} kimi işarə olunur. Düz xətt üzərində n sayda nöqtə olduqda həmin düz xətt üzərində parçaların sayı (N) kimi işarə olunur.
Sinus (riyaziyyat)
Koordinat başlanğıcından verilmiş bucaq istiqamətində buraxılmış şüanın, mərkəzi koordinat başlanğıcında yerləşmiş vahid çevrəni kəsdiyi nöqtənin kordinatına həmin bucağın Sinusu deyilir.