Lüğətlərdə axtarış.

Axtarışın nəticələri

OBASTAN VİKİ
Şüalanma
Şüalanma – enerjinin şüalar (görünən və görünməyən) vasitəsilə köçürülməsi prosesi. Şüalanma tam vakuumda da baş verir. Güclü və yaxud zəif qızdırılmış bütün cisimlər (insan bədəni, soba, lampa) enerji şüalandırır. Şüalanma cisimlərdən yayılaraq başqa cisimlərin üzərinə düşür. Bu halda şüalanma enerjisinin bir hissəsi əks olunur, bir hissəsi cisimlər tərəfindən udularaq onların daxili enerjisinə çevrilir. Bunun nəticəsində cisimlər qızır. "Radiaktiv" maddələrin alfa, betta və qamma kimi şüaların yayılmasını və ya Kosmosda yayılan hər hansı bir elektromaqnetik şüanı meydana gətirən ünsürlərin hamısına Radiasiya deyilir. Bir maddənin atom nüvəsindəki neytronların sayı, proton sayına görə olduqca çoxdursa, bu cür maddələr qərarsız bir quruluş göstərməkdə və nüvəsindəki neytronlar alfa, betta və qamma kimi müxtəlif şüalar yaymaq sürətiylə parçalanmaqdadırlar. Ətrafına bu şəkildə şüa saçaraq parçalanan maddələrə Radioaktiv maddə ("işıqlanmış maddə") deyilir. Şüalanma sözünün mənası bir nöqtədən çıxma, yayılma, səpilmə ( şüa-bir nöqtədən başlayan düz xətt) deməkdir.
Beta
Beta (ß) — yunan əlifbasının ikinci hərfi, elektron şüalanmasının adı. Alfadan sonra, qammadan əvvəl gələn hərfdir.
Qamma şüalanma
Qamma şüalanma (simvolu: γ) –olduqca qısa dalğa uzunluğu ilə xarakterizə olunan elektromaqnit şüalanmasının bir növüdür. Dalğa uzunluğu 0.1 nm və ondan kiçik elektromaqnit dalğaları olub, yüksək enerjili foton selindən ibarətdir. İonlaşdırıcı şüalanmaya, yəni bir maddə ilə qarşılıqlı təsir göstərərək fərqli əlamətlərin ionlarının meydana gəlməsinə səbəb ola biləcək radiasiyaya aiddir. Qamma şüalanması yüksək enerji fotonların (qamma şüalarının) axınıdır. Qamma və rentgen şüaları arasındakı kəskin sərhəd müəyyən edilməməsinə baxmayaraq, qamma-şüa kvantının enerjisinin 105 eV-dən çox olduğu qənaətindədir. Elektromaqnit dalğalarının miqyasında, qamma şüaları rentgen şüaları ilə həmsərhəddir, daha yüksək tezlik və enerji aralığını tutur. 1-100 keV aralığında qamma şüalanması və rentgen şüalanması yalnız mənbəyində fərqlənir: əgər nüvə keçidində kvant yayılıbsa, onu qamma şüalanmasına aid etmək olar. Bir parçalanma zamanı verilən maddənin nüvəsindən xaricə alfa və betta zərrəciklər olmaqla yalnız biri atılır. İstənilən radioaktiv nüvə parçalanması isə qamma - fotonların şüalanması ilə müşahidə olunur. Beta şüalanmasının spektrinin nə üçün bütöv alınmasını araşdıran Pauli 1932-ci ildə fərz edib ki, nüvədən betta zərrəciyi ilə yanaşı kütləsi kiçik neytral zərrəcik də kənar edilir.
Radiaktik şüalanma
Radioaktiv şüalanma – alfa, beta və qamma şüalarının yayılması. == Radioaktiv zəhərlənmə == Ətraf mühitə radioaktiv parçalanma məhsullarının yayılması: nüvə döyüş sursatının parçalanmasından yaranan dağıdıcı amillərdən biri. Radioaktiv zəhərlənmə insan orqanizminə zərərli təsir göstərir (şüa xəstəliyi törədir). Yeraltı, yerüstü, sualtı və su üstündə nüvə partlayışlarından meydana gələn Radioaktiv zəhərlənmə daha təhlükəlidir. Radioaktiv zəhərlənmə. zamanı qrunta (suya) və havaya başlıca olaraq nüvə atımının bölünmə məhsulları (izotoplar), radioaktiv maddələr, habelə nüvə atımı atomlarının parçalanmayan hissəsi keçir.
Radioaktiv şüalanma
Radioaktiv şüalanma – alfa, beta və qamma şüalarının yayılması. == Radioaktiv zəhərlənmə == Ətraf mühitə radioaktiv parçalanma məhsullarının yayılması: nüvə döyüş sursatının parçalanmasından yaranan dağıdıcı amillərdən biri. Radioaktiv zəhərlənmə insan orqanizminə zərərli təsir göstərir (şüa xəstəliyi törədir). Yeraltı, yerüstü, sualtı və su üstündə nüvə partlayışlarından meydana gələn Radioaktiv zəhərlənmə daha təhlükəlidir. Radioaktiv zəhərlənmə. zamanı qrunta (suya) və havaya başlıca olaraq nüvə atımının bölünmə məhsulları (izotoplar), radioaktiv maddələr, habelə nüvə atımı atomlarının parçalanmayan hissəsi keçir.
Rentgen şüalanma
Rentgen şüaları- Vilhelm Rentgen tərəfindən kəşf edilmiş (1895) və X-şüaları (İks şuaları) adlandırılmışdır. Elektromaqnit dalğalarının şkalasında spektrin qamma şüalanma ilə ultrabənövşəyi şüalanma arasındakı dalğalar diapazonunda yerləşir. Dalğa uzunluğu λ < 2 A ˙ {\displaystyle \lambda <2{\dot {A}}} olan Retgen şüaları şərti olaraq sərt Retgen şüaları, λ > 2 A ˙ {\displaystyle \lambda >2{\dot {A}}} olan Retgen şüaları yumşaq adlanır. Rentgen borusu, radioaktiv izotoplar rentgen şüalarının mənbəyidir. Radioaktiv izotoplardan alınan rentgen şüalarının intensivliyi retgen borusu vasitəsi alınan rentgen şüalarının intensivliyindən dəfələrlə az olur. Günəş və digər kosmik obyektlər Rentgen şüalarının təbii mənbələridir. Rentgen şüalarının spektri onların yaranma mənbəyindən asılı olaraq kəsilməz və xətti ola bilər. Kəsilməz spektr elektronların hədəf atomları ilə toqquşması nəticəsində yaranır. Xətti spektr hədəf atomlarının ionlaşdırılması nəticəsində alına bilər. Rentgen şüaları gözlə görünmür.
Ultrabənövşəyi şüalanma
Ultrabənövşəyi şüalanma (ing. ultraviolet, UV) — dalğa uzunluğu 10-400 nanometr arasında şüalanmadır. İnsan gözü 400-700 nanommetr dalğa uzunluqlarına həssasdır və bu spektrin xaricindəki şüaları görə bilmir. Gözün görə bildiyi ən kiçik dalğa uzunluqlu şüalanma bənövşəyi olduğundan, ondan daha kiçik dalğa uzunluğuna sahib olan şüaya "ultra bənövşəyi" adı verilmişdir. == Növləri == Bütün ultrabənövşəyi şüaların eyni xarakteristikaya sahib olmadığı və canlılar üzərindəki təsiri fərqli olması səbəbi ilə Ultrabənövşəyi şüalanma UŞ-A, UŞ-B və UŞ-C adlanan üç kateqoriyaya ayrılmışdır. UŞ-A: O biri şüalara nisbətən 95%-i ilə ən geniş ultrabənövşəyi şüadır. Ozon təbəqəsi bu şüaların keçməsinə imkan verir. UŞ-B: Olduqca təhlükəlidir. Bu şüaların böyük bir qismi, ozon təbəqəsi bu şüaların keçməsinə mane olur. Ultrabənövşəyi şüalarının 5 %-ni təşkil edir.
İnfraqırmızı şüalanma
İnfraqırmızı((İQ) ~ en. infrared (IR) ~ ru. инфракрасный (ИК) ~ tr.kızıl ötesi) – elektromaqnit spektrinin görününən qırmızı işıqdan azacıq aşağı tezliklərdə elektromaqnit şüalanması. İnfraqırmızı diapazon ənənəvi olaraq dalğa uzunluqlarına görə dörd qismən ixtiyari kateqoriyaya bölünüb: Yaxın infraqırmızı 750 – 1500 nanometr (nm) Orta infraqırmızı 1500 – 6000 nm Uzaq infraqırmızı 6000 – 40000 nm Çox uzaq infraqırmızı 40000 nm – 1 mmİQ-şüalanmaya bəzən yüksək temperatur şüalanması (radiasiyası) da deyirlər ki, bu da əslində tam doğru deyil. İQ-şüalanmanı yüksək temperaturun dəriyə təsiri ilə müqayisə etmək olar və buna görə də o, istilik kimi hiss edilir. Lakin bütün obyektlər İQ-diapazonda öz temperaturlarına mütənasib olaraq şüalanırlar. == Ədəbiyyat == İsmayıl Calallı (Sadıqov), “İnformatika terminlərinin izahlı lüğəti”, 2017, “Bakı” nəşriyyatı, 996 s.
Şüalanma dozası
Şüalanma dozası — Şüalanmanın canlı orqanizmə verdiyi zərər onun toxumaya ötürdüyü enerjinin miqdarından və bu enerjinin toxumada paylanması xüsusiyyətlərindən asılıdır. Maddənin vahid kütləsi tərəfindən udulan şüalanma enerjisinə udulan doza deyilir. Udulan dozanın vahidi Qreydir. 1Qrey(Qr) – 1kq kütlə tərəfindən 1Coul enerjinin udulduğu dozadır. Müxtəlif növ şüalanma növlərinin insan orqanizminə və toxumalara təsiri fərqlidir. İonlaşdırıcı şüalanma növlərindən asılı olaraq eyni qədər udulan dozanın təsirindən əmələ gələn radiobioloji effektlər fərqli olur. Bu ionlaşdırıcı müxtəlif şüalanmaların hissəciklərinin toxuma ilə qarşılıqlı təsiri zamanı enerjinin ötürülməsi mexanizminin fərqli olması ilə əlaqədardır. Müxtəlif şüalanma növlərinin radiobioloji effekt yaratma qabiliyyətlərinin fərqini əks etdirmək üçün ekvivalent doza adlanan kəmiyyət daxil edilir.
Beta Oğlaq
Beta Capricorni, β Capricorni qısaldılmış formada Beta Cap, β Cap — Capricornus bürcündə bir çox ulduz sistemi və günəşdən 328 işıq ili təşkil edir. Sistem beş ulduzdan ibarətdir. Dürbün və ya kiçik bir teleskopla, Beta Capricorni ikili cüt halına gətirilə bilər. İki dənəsinin parlaqlığı Beta¹ Capricorni və ya Beta Capricorni A; dimmer, Beta² Capricorni və ya Beta Capricorni B. Hər ikisi də özləri çoxlu ulduzlardan ibarətdir. Beta¹ Capricorni üç komponentə malikdir; Beta Capricorni Aa (həmçinin Dabih [4] adı verilmiş) və ikili cüt, Beta Capricorni Ab (iki komponent Beta Capricorni Ab1 və Ab2 olaraq təyin olunur) adlı bir ulduzdur. Beta² Capricorni də Beta Capricorni Ba və Bb komponentləri olan ikili cütdür. Digər yaxın ulduzları John Herschel tərəfindən aşkar edilmişdir. Bəzən Beta Capricorni D və E kimi adlandırılanlar, sadəcə optik cütlərin və ya Beta Capricorni sisteminin bir hissəsinin olub-olmadığı aydın deyil. == Xüsusiyyətləri == Beta¹ Capricorni, dimensional Beta² Capricorni'nin +6.09-da görünən bir qüvvətə malik olduğu halda, iki hissənin daha parlaqdır. İki komponent göydə 3.5 arcminut ilə ayrılaraq, onları ən azı 21 min AU (0.34 işıq ili) ayırır.
Beta Tea
Beta Tea — çay brendi.1994-cü ildə baş verən iqtisadi böhran səbəbilə istehsalçı şirkət brendi fərqli bazarlara soxmaq məcburiyyətində qalmışdır. Beləliklə, "Beta Tea" Türkiyəyə idxal çayı gətirən ilk firma olmuşdur. Brend 1990-cı illərin əvvəllərində postsovet məkanındakı dövlətlərin bazarlarına daxil olmuşdur. MDB ölkələrinə çay idxal edən ilk özəl müəssisə məhz "Beta" olmuşdur. Şirkət indiki dövrdə Azərbaycan, Qazaxıstan, Tacikistan, Özbəkistan, Qırğızıstan, Rusiya və İraq kimi ölkələrdə bir sıra brendləri ilə fəaliyyət göstərməkdədir.
Beta hissəcik
Beta hissəciklər- yüksək enerji və sürətli elektron və ya pozitronlardır. Beta hissəciklərin yayılma prosesi beta şüalanması adlanır. Enerji 0,5 MeV olan Beta hissəcikləri havada təxminən bir metr aralığa malikdir; məsafə hissəcik enerjisindən asılıdır. Beta hissəcikləri ionlaşdırıcı şüalanmanın bir növüdür və radiasiyadan qorunma məqsədləri üçün qamma şüalarından daha çox ionlaşan, lakin alfa hissəciklərindən daha az ionlaşan sayılırlar. İonlaşdırıcı təsir nə qədər yüksək olarsa, canlı toxumaya ziyan bir o qədər artır. == Beta şüalanması == === β - parçalanma (elektron emissiya) === Artıq neytronları olan qeyri-sabit bir atom nüvəsi bir neytronun bir protona, bir elektrona və bir elektron neytrinə çevrildiyi β - çürüməyə məruz qala bilər: n → p + e- + νenuclear çürümə nüvə reaktorlarında istehsal olunan neytronla zəngin parçalanma yan məhsulları arasında tez-tez baş verir. Pulsuz neytronlar da bu proses vasitəsilə çürüyür. Bu proseslərin hər ikisi parçalanma-reaktor yanacaq çubuqları tərəfindən istehsal olunan çox sayda beta şüalarına və elektron antineutrinlərə kömək edir. === β + parçalanma (pozitron emissiya) === β + şüalanma pozitronların yayılması prosesidir. β + çürümə zamanı protonlardan biri neytrona , eletron neytrinə və pozitrona çevrilir: p → n + e+ + νe == Aşkarlama və ölçmə == Beta hissəciklərinin maddəyə təsir edən ionlaşdırıcı və ya həyəcanlandırıcı təsiri radiometrik aşkaretmə alətlərinin beta şüalanmasını aşkar və ölçmələri əsas proseslərdir.
Beta laktamazlar
Beta laktamazlar (β-laktamazlar) — bakterial fermentlər qrupu olub, beta laktamlı antibiotiklərin təsirini azaltmağa və sıfıra endirməyə qabil substant. Bu fermentlər sözügedən antibiotiklərə qarşı müqavimətli, dözümlü bakteriyaların əmələ gəlməsinə səbəb olurlar. == Katalizasiya reaksiyası == β-Laktamasların təsirindən hidrolitik laktam həlqəsinin açııaraq pozulması nəticəsində aralıq məhsulun, sonra isə öz-özünə dekarboksilləşmə nəticəsində son məhsulun alınması reaksiyası: Həlqə pozğunluğu aralıq məhsulu öz-özünə dekarboksilləşir. Bu zaman aralıq məhsulun orqanizmin zülaları ilə geridönməyən birləşmələr əmələ gətirərsə, bu allergik reaksiyaya səbəb ola bilər. Adətən bu cür tam potensiallı antigenlərə qarşı orqanizmin antitellər vasitəsilə dəf etmə mexanizmi işə düşmüş olur. Nəticə etibarilə sensiblizasiya reaksiyasının: dəri qıcıqlanmasından -övrədən tutmuş anafilaktik şokadək inkişafı mümkündür. == ESPL == ESPL (ing. Extended– spectrum Beta- Laktamase geniş spektrli beta laktamazlar) β laktam tərkibli antibiotiklərin geniş spektrini bölmək qabiliyyəti deməkdir. Enterobakteriyalar ailəsindən olan bakteriyalar beta laktamazlar adlanan enzim yaratma qabiliyyətinə malikdirlər ki, bu da antibiotik təsirini qüvvədən salmış olur. ESBL mikrob olmayıb, müxtəlif enterobakteriyaların birlikdə qazanmış olduğu özünə məxsusluq ya xasiyyətdir.
Beta particle
Beta hissəciklər- yüksək enerji və sürətli elektron və ya pozitronlardır. Beta hissəciklərin yayılma prosesi beta şüalanması adlanır. Enerji 0,5 MeV olan Beta hissəcikləri havada təxminən bir metr aralığa malikdir; məsafə hissəcik enerjisindən asılıdır. Beta hissəcikləri ionlaşdırıcı şüalanmanın bir növüdür və radiasiyadan qorunma məqsədləri üçün qamma şüalarından daha çox ionlaşan, lakin alfa hissəciklərindən daha az ionlaşan sayılırlar. İonlaşdırıcı təsir nə qədər yüksək olarsa, canlı toxumaya ziyan bir o qədər artır. == Beta şüalanması == === β - parçalanma (elektron emissiya) === Artıq neytronları olan qeyri-sabit bir atom nüvəsi bir neytronun bir protona, bir elektrona və bir elektron neytrinə çevrildiyi β - çürüməyə məruz qala bilər: n → p + e- + νenuclear çürümə nüvə reaktorlarında istehsal olunan neytronla zəngin parçalanma yan məhsulları arasında tez-tez baş verir. Pulsuz neytronlar da bu proses vasitəsilə çürüyür. Bu proseslərin hər ikisi parçalanma-reaktor yanacaq çubuqları tərəfindən istehsal olunan çox sayda beta şüalarına və elektron antineutrinlərə kömək edir. === β + parçalanma (pozitron emissiya) === β + şüalanma pozitronların yayılması prosesidir. β + çürümə zamanı protonlardan biri neytrona , eletron neytrinə və pozitrona çevrilir: p → n + e+ + νe == Aşkarlama və ölçmə == Beta hissəciklərinin maddəyə təsir edən ionlaşdırıcı və ya həyəcanlandırıcı təsiri radiometrik aşkaretmə alətlərinin beta şüalanmasını aşkar və ölçmələri əsas proseslərdir.
Beta vulgaris
Adi çuğundur (lat. Beta vulgaris ) - çuğundur cinsinə aid bitki növü.
Beta Əjdaha
Beta Draconis — ikili bir ulduz və Draco şimal dairəvi plitələrində üçüncü parlaq ulduzdur. 2.79-da görülə bilən vizual ölçülüdür, Adi gözlə asanlıqla görülə bilən parlaqdır. Hipparcos astrometri peykindən parallax ölçmələrinə əsasəndir. Günəşdən təxminən 380 işıq ili (120 parsek) məsafəsində yerləşir. == Xüsusiyyətləri == İkili sistem hər dörd minillikdə və ya bir dəfə cırtdan bir yoldaş tərəfindən yaradılan parlaq nəhəngdən ibarətdir. Günəşlə müqayisədə, Beta Draconis A altı dəfə kütləsi və təxminən 40 qat radiuslu böyük bir ulduzdur. Bu ölçüdə Günəşin parlaqlığını 950 dəfə xarici zərfdən effektiv 5,160 K temperaturda, isə G tipli bir ulduzun sarı hündürlüyünə verir. Spektri II parlaq parlaqlıq göstərən II parlaqlıq sinfi ilə G2 II, -nin mükəmməl təsnifatına uyğun gəlir. Bu təxminən 67 milyon yaşındadır.
Beta əmsalı
Opsanus beta
Opsanus beta (lat. Opsanus beta) — heyvanlar aləminin xordalılar tipinin şüaüzgəclilər sinfinin batraxkimilər dəstəsinin batraxlar fəsiləsinin opsanus cinsinə aid heyvan növü.
Beta Vukanoviç
Beta Vukanoviç və yaxud Babette Baxmayer (serb. Бета Вукановић; 18 aprel 1872, Bamberq, Bavariya – 31 oktyabr 1972, Belqrad) — serb rəssamı, impressionizmin nümayəndəsi. Onun sonrakı əsərləri realist üslubda olub, lakin buna baxmayaraq həmişə impressionist palitrasını saxlayıb. == Həyatı == Beta Vukanoviç 18 aprel 1872-ci ildə Almaniya imperiyasının Bamberq şəhərində Babette Baxmayer (alm. Babette Bachmayer‎) adı ilə anadan olub. İbtidai məktəbi və qızlar liseyini bitirdikdən sonra 1890-cı ildə Münhendəki Karl Mar və Anton Ajbenin özəl rəssamlıq məktəbinə daxil olur. Studiyada Beta Risto Vukanovic ilə tanış olur və onlar 1898-ci ildə ailə qururlar. Cütlük bal ayı əvəzinə Belqrad gedir, dostları onlara sənətə marağı olmayan kiçik bir şəhər olduğunu desə də, Vukanoviçlər bu məsləhətə əhəmiyyət vermirlər. === Serbiyaya gəliş === Onlar 1898-ci ilin yayında Belqrada gəlirlər. Onlar gələndə paytaxt şərq şəhərindən Avropa şəhərinə çevrilmişdi.
Nüvə şüalanma detektoru
Nüvə şüalanma detektoru — α {\displaystyle \alpha } zərrəcikləri və elementar zərrəcikləri qeydə almaq, saymaq, tərkibini təyin etmək, intensivliyini və enerji spektrlərini ölçmək üçün cihaz. Nüvə şüalanma detektoru iki sinfə bölünür: sayğaclar və iz qeydediciləri. Sayğaclar vasitəsilə fəzanın müəyyən hissəsindən müəyyən anda keçən zərrəciklər qeyd olunur, onların enerjisi, yükü, sürəti və kütləsi təyin edilir. Heyker—Müller və Çerenkov sayğacları, lüminessent və yarımkeçirici sayğaclar belə sayğaclardandır. İz qeydedicilərdə yüklü zərrəciyin izinin (trekinin) fotoşəkli çəkilir. Bu, qeyri-stabil zərrəciklərin parçalanma proseslərini öyrənməyə imkan verir. Vilson kamerası, diffuziya kamerası, qabarcıqlı kamera, qığılcım kamerası və qalınlaylı nüvə fotoemulsiyaları bu növ qeydedicilərdəndir. Nüvə şüalanma detektorunun iş prinsipi yüklü zərrəciklərin detektoru işçi həcmini dolduran maddə atomlarını həyəcanlandırmasına və ya ionlaşdırmasına əsaslanır. γ {\displaystyle \gamma } - kvantlar və neytronlar isə detektorun işçi maddəsi ila qarşılıqlı təsirləri nəticəsində yaranan yüklü zərrəciklər vasitəsilə qeyd olunur. Nüvə zərrəciklərinin maddədən keçməsi sərbəst elektronların, ionların, işıq [parıltılarının (ssintillyasiya) yaranması, həmçinin kimyəvi və istilik dəyişiklikləri ilə müşayiət olunur.
Arrestin beta 1
Arrestin beta 1 ARRB1 kimi də adlanır — insanlarda 11-ci xromosomun qısa qolunda olan tək bir gen tərəfindən kodlanmış zülal. == Funksiyası == Beta-arrestin zülal ailəsinin üzvlərinin G zülalı ilə əlaqəli reseptorların agonist vasitəçiliyi ilə desensitizasiyasında iştirak etdiyi və hormonlar, neyrotransmitterlər və ya duyğu siqnalları kimi stimullara hüceyrə reaksiyalarının spesifik şəkildə yatırılmasına səbəb olduğu düşünülür. Arrestin beta 1 sitozolik zülaldır və beta-adrenergik reseptorların beta-adrenergik reseptor kinaz (BARK) vasitəçiliyi ilə desensibilizasiyasında kofaktor kimi çıxış edir. Arrestin beta 1 mərkəzi sinir sistemi ilə yanaşı, periferik qan leykositlərində yüksək səviyyədə ifadə edilir və beləliklə, BARK/beta-arrestin sisteminin reseptor vasitəçiliyi ilə immun funksiyalarının tənzimlənməsində böyük rol oynadığına inanılır. Alternativ olaraq, arrestin beta 1-in müxtəlif izoformlarını kodlayan birləşdirilmiş transkriptlər təsvir edilmişdir, lakin onların dəqiq funksiyaları məlum deyil. Beta-arrestinin aralıq maddələri birləşdirən və reseptorları klatrin vasitəçiliyi ilə endositoza birləşdirərək G-protein siqnalını yönləndirə bilən bir çərçivə rolunu oynadığı göstərilir.
Arrestin beta 2
Arrestin beta 2, həmçinin arrestin beta-2 olaraq da bilinir — insanlarda ARRB2 geni ilə kodlanan hüceyrədaxili zülal. Arrestin beta 2 zülal ailəsinin üzvlərinin G zülalı ilə əlaqəli reseptorların agonist vasitəçiliyi ilə desensitizasiyasında iştirak etdiyi və hormonlar, neyrotransmitterlər və ya duyğu siqnalları kimi stimullara hüceyrə reaksiyalarının spesifik şəkildə yatırılmasına səbəb olduğu düşünülür. Arrestin beta 2 zülalı həmçinin müstəqil siqnal roluna malikdir.Arrestin beta 2, arrestin beta 1 kimi, beta-adrenergik reseptor funksiyasını in vitro inhibe edir. Mərkəzi sinir sistemində yüksək səviyyədə ifadə edilir və sinoptik reseptorların tənzimlənməsində rol oynaya bilər. Beyinlə yanaşı, arrestin beta 2 üçün tamamlayıcı DNT qalxanabənzər vəzindən təcrid edilmişdir və beləliklə, o, tirotropin reseptorlarının hormon-spesifik desensitizasiyasında da iştirak edə bilər. Bu gen üçün bir çox alternativ olaraq birləşdirilmiş transkript variantları tapılmışdır, lakin bəzi variantların tam aydın təbiəti müəyyən edilməmişdir.[13] Zülal 5-HT2A reseptor siqnalında agonist DOI ilə qarşılıqlı əlaqədə ola bilər.Arrestin beta 2 morfin və digər opioidlərə qarşı dözümlülüyün inkişafı üçün vacibdir.
Beta transformasiyaedici böyümə faktoru
β — transformasiyaedici böyümə faktorları proteinlərdirlər və sitokinlərin bir qrupudurlar.Onlara bu ad kultural mühitdə normal hüceyrələrin fenotiplərini dəyişdirə bilmə xüsusiyyətlərinin olmasına görə verilib. β transformasiya edici böyümə faktoru 3 izoformada mövcuddur və molekul kütləsi 50KDa a bərabər iki homodimerdən təşkil olunmuşdur. β transformasiyaedici böyümə faktorunun produsentlərinə,bir sıra hüceyrələr , o cümlədən ,stromal hüceyrələr,makrofaqlar və müxtəlif növ şiş hüceyrələri daxildirlər. O,qeyri aktiv formada sintez olunur,proteazaların hidrolitik təsirindən aktivləşdikdən sonra hüceyrəarası matriksin kompanentləri və α makroqlobulin molekulları ilə birləşir. İmmun sistemində β-transformasiyaedici böyümə faktorları özünü supressiv bir faktor kimi aparır.O,hemopoez prosesinə,iltihab sitokinlərinin sintezinə,limfositlərin interleykin-2,4 və 7 qarşı reaksiyalarına, təbii killer və T-sitotoksik hüceyrələrin formalaşmasına neqativ təsir göstərir.Bununla yanaşı, β tansformasiyaedici böyümə faktoru hüceyrəarası matriks zülüllarının sintezini,yaraların sağalmasını və anabolik prosesləri sürətləndirir.Onun differensisasiya təbiətli təsiri də məlumdur.Məsələn:o, plazmatik B hüceyrələrində immunoqlobulinlərin sintezini İg A istiqamətində yönəltməklə və İL-10 la birlikdə onun ifrazını 10 dəfə artırmaqla selikli qişanın müdafiəsini gücləndirə bilir.Onun geninin söndürülməsi əsasında autoimmun reaksiyaları duran və bədənin bütün ahələrini əhatə edən fatal iltihab patologiyası yaranır,yəni β tansformasiyaedici böyümə faktoru orqanizmdə autoimmun proseslərinin qarşısını alan bir faktor kimi də fəaliyyət göstərir.
Passiflora hederifolia var. beta
Passiflora suberosa (lat. Passiflora suberosa) — qonaqotukimilər fəsiləsinin qonaqotu cinsinə aid bitki növü. == Sinonim == Anthactinia walkeri M.Roem. Cieca angustifolia M.Roem. Cieca flexuosa M.Roem. Cieca globosa M.Roem. Cieca hederacea M.Roem. Cieca littoralis M.Roem. Cieca nigra Medik. Cieca oliviformis M.Roem.
Beja
Beja (port. Beja) — Portuqaliyada şəhər. == Tarixi == Bugün Beja adını daşıyan və Portuqaliyanın aşağı Aləntejo bölgəsində, Lissabonun cənubi-şərqində olan Beja şəhərinin tarixi çox əskilərə getməkdədir. Romalılar dövrindəki adı Pax Juiia olub İslam fəthindən sonra bu ad müsəlmanlar tərəfindən Bacə şəklinə çevrilmişdir. Bacə fəth edildikdən sonra Əndülüsün əsgəri mərkəzlərindən biri halına gətirildi və Tarik bin Ziyad buraya Misirli əsgərləri yerləşdirdi. Əndülüs Əməvi hökmdarı I Əbdürrəhman zamanında Ala bin Mugis, Abbasi xəlifəsi Mənsurla iş birliyi yaradaraq Bacədə bir üsyan başlatdıysa da, Karmunədə (Carmona) Əbdürrəhmana yenilərək öldürüldü (146/7631 və Bacəyə də Fələstinli əsgərlər yerləşdirildi. Tarixi boyunca bir çox qarışıqlığa səhnə olan Bacə 844-cü ildə dənizdən gələn vikinqlərin hücumuna uğradı. Daha sonra məhəlli liderlər mərkəzi yönətimə qarşı çıxmağa başladılar və bölgənin önəmli ailələrindən Tayfurilər bir müddət burada hökmran oldular. Şəhər 1040-cı ildə İşbiliyədə (Sevilla) hökm sürən Abbadilərin əlinə keçdi. 1161-ci ildə Portuqaliyalılar tərəfindən zəbt edilən Bacəyə ardından Müvahhidlər hakim olduysa da (1171) qısa bir müddət sonra şəhər təkrar və son dəfə Portuqaliyalilərin əlinə keçdi.
Buta
Buta (butə, puta) – qönçə; badamabənzər naxış növüdür. Azərbaycan ornament sənətinin çox yayılmış bəzək elementlərindən biri. == Etimologiyası == Birmənalı olaraq, «buta/puta» sozünün ilkin mənası qədim türk xalqlarının mifoloji təsəvvürlərində sakral xarakter daşıyan rəmzlə bağlıdır. Zərdüşt təliminə əsasən, buta Günəşin, müqəddəs odun rəmzi, insanı bədnəzərdən, xəstəliklərdən qoruyan pak alov dilinin stilizə olunmuş təsviridir. Azərbaycanın toponimikasında, folklorunda, tətbiqi sənətində, memarlığında bu arxetipin forma və varianları ilə bağlı çoxsaylı misallar çəkmək olar: Misir ehramlarının yaşıdı sayılan Qız qalasının konturları yüksəklikdən butaya bənzəyir. Bakı şəhərinin heraldik rəmzində də buta təsvir olunmuşdur. Butanın atəşpərəstlik dövrünə məxsus bəzək forması olduğu ehtimal edilir. Bakı, Gəncə, Ərdəbil, Təbriz, Naxçıvan, Salyan, Muğan xalçalarında, binaların daxili bəzəkləri və digər sənət nümunələrində butadan geniş istifadə edilmişdir. Buta Orta Asiya və Yaxın Şərq ölkələrinin də (Hindistanın tirmə şallarında, İranın parça və metal məmulatlarında və s.) dekorativ və tətbiqi sənətində geniş yayılmışdır. Butalar forma etibarı ilə 4 qrupa bölünür: Xalça bəzəyində işlədilən butalar ("Muğan-buta", "Salyan-buta", "Xilə-buta", "Bakı-buta", "Sarabi-buta", "Gəncə-buta", "Şirvan-buta"); Ailə həyatını təmsil edən butalar ("bala-buta", "həmli-buta", "balalı-buta", "evli-buta", "qoşaarvadlı-buta" və s.); Rəmzi mahiyyət daşıyan butalar ("cıqqa-buta", "lələk-buta", "küsülü-buta", "qovuşan-buta", "yazılı-buta" və s.); Bu qrupa müxtəlif formalı butalar daxildir: "saya-buta", "əyri-buta", "dilikli-buta", "qıvrım-buta", "şabalıd-buta", "zərxara-buta", "badamı-buta", "qotazlı-buta", "çiçəkli-buta", "yanar-buta" və s.
Feta
Feta (yun. Φέτα — dilim, hissə) — Yunan pendiri, keçi südünün əlavə olunduğu qoyun südündən hazırlanmış ənənəvi ağ yunan pendiri. Duzlu pendir növüdür. Brınza pendiri kimi Feta pendiridə Azərbaycanda "Ağ Pendir" kimi tanınır. == Tarixi == Yunanıstanda qoyun və ya keçi südündən pendir hazırlanmasına aid sənədlər, eramızdan əvvəl 8-ci əsrə aiddir. Bizans dövründə prósphatos (Yunanca: πρόσφατος "son" və ya "təzə") adı altında qeydə alınmış və kiritlilər və fessallilər tərəfindən hazırlanmışdır. XV əsrin sonlarında Kandiyaya gələn İtalyan qonaq Pyetro Kasola burda feta pendirinin ticarətini və duzlu suda saxlaması haqqında məlumat verib. == Hazırlanması == Pendirin yaşlanma müddəti ən azı 3 aydır. Yağ tərkibi% 30 ilə% 60 arasındadır. Oxşar pendirlər Cənub-Şərqi Avropada — Yunanıstan, Bolqarıstan, Serbiya, Bosniya, Xorvatiya, Rumıniya, Aralıq dənizi ölkələrində, Orta Şərqdə — Türkiyə, İsrail və Misirdə (əsasən inək südündən hazırlanır) hazırlanır.
Geta
Aşağı Güləver — Gürcüstan Respublikasının Bolnisi rayonunda kənd. == Tarixi == == Mədəniyyəti == Yuxarı Güləverdə ilk məktəb 1930-cu ildə yaradılıb. Hazırda Yuxarı Güləverdə bir baza məktəbi, Aşağı Güləverdə bir orta məktəb var. == Coğrafiyası və iqlimi == Güləver kəndi Gədi çayının sol sahilində, rayon mərkəzindən 17 km qərbdə, dəniz səviyyəsindən 810 m hündürlükdə yerləşir. Bulqarların Qıpçaq tirəsi Kollarla, Alban tayfası Kellərlə, Qıpçaq-Qarapapaqlar içindəki Kul tayfası ilə bağlılığını düşünmək mümkündür. Kənd iki yerə bölünür: Yuxarı Güləver (Cipor) və Aşağı Güləver (Gədi-Qeta). == Əhalisi == 1870-ci ildə Yuxarı Güləverdə 7 ailədə 47 nəfər, Aşağı Güləverdə 7 ailədə 47 nəfər, 1918-ci ildə Yuxarı Güləverdə 155 nəfər, Aşağı Güləverdə 218 nəfər, 1926-cı ildə Yuxarı Güləverdə 39 ailədə 231 nəfər, Aşağı Güləverdə 28 ailədə 153 nəfər, 2002-ci ildə Yuxarı Güləverdə 117 ailədə 522 nəfər, Aşağı Güləverdə 173 ailədə 698 nəfər, 2006-cı ildə Yuxarı Güləverdə 117 ailədə 500 nəfər, Aşağı Güləverdə 150 ailədə 781 nəfər.
Keta
Keta (lat. Oncorhynchus keta) — Qızılbalıqkimilər dəstəsindən balıq növü. Sakit okean sümüklüsü fəsiləsinə daxil olan növlər arasında Qorbuşadan sonra ən tez böyüyən və geniş arealda yayılmış balıqdır. Qiymətli sənaye balığı sayılır. == Təsviri == İndiyənə kimi qeydə alınmış ən uzun balıq 100 sm uzunluğa və 15,9 kq çəkiyə sahib olmuşdur. Ömür müddəti 7 ildir. Digər məlumata əsasən Alyaskada 109 sm uzunluğa və 20,8 kq çəkiyə sahib balıqlar aşkarlanmışdır. == Areal == Bu balıqlar Sakit okean qızılbalıqları arasında ən böyük aereala malik olanlarıdır. Şimal Buzlu okeanda onlar Kolıma, İndigirka, Yana və Lena çaylarına girirlər. Kamçatka, Saxalin, Kuril adaları, Kanadada Makkenzi çayı, Kaliforniyada Monterey körfəzində yayılmışdır.
Meta
Meta — soyad. Ermal Meta — Alban mənşəli İtaliya müğənnisi və bəstəkarı. İlir Meta — alban siyasətçi.
Elektromaqnit şüalanması
Elektromaqnit şüalanması (ing. Electromagnetic radiation, rus. Электромагнитное излучение) — elektrik və maqnit sahəsinin komponentlərini ilə özünü saxlayan enerjidir. Elektromaqnit şüalanması tez-tez "işıq", EM, EMR və ya elektromaqnit dalğaları kimi adlandırılır. Elektromaqnit enerji dalğalarda hərəkət edir və çox uzun radio dalğalarından çox qısa qamma şüalarına qədər geniş bir spektri əhatə edir.
İstilik şüalanması
İstilik şüalanması — temperaturu mütləq sıfırdan fərqli olan istənilən cisim elektromaqnit dalğaları şüalandırır. Belə şüalanma həmin cismin istilik enerjisinin ehtiyatı hesabına baş verir. Şüalanan cismə kənardan əlavə enerji verilmədiyi halda onun enerji ehtiyatı azaldığından temperaturu get-gedə aşağı düşür. Digər tərəfdən, bu şüalanma hər hansı cisim tərəfindən udulduqda onun istilik enerjisi ehtiyatını artırır - cisim qızır. Elə bunlara görə də həmin şüalanma istilik şüalanması, yaxud temperatur şüalanması adlanır. İstilik şüalanması bütün digər növ şüalanmalardan fərqli olaraq tarazlıqlı şüalanmadır. Kimyəvi reaksiyalar nəticəsində meydana gələn şüalanma müstəsna olmaqla bütün şüalanma növlərində şüaburaxma, sistemin həyəcanlanmış haldan əsas hala keçməsi nəticəsində baş verir. İstilik şüalanmasını digər növ şüalanmalardan, məsələn lüminesensiyadan fərqləndirən cəhət şüalanma nəticəsində sistemin itirdiyi enerjinin yerini doldurma (şüalanma mənbəyini həyəcanlanmış hala gətirmə) mexanizmidir. İstilik şüalanması zamanı həyəcanlanmış hala keçmə istilik hərəkəti hesabına toqquşan hissəciklərin (atom və molekulların) öz enerjisinin müəyyən hissəsini digər hissəciklərə verməsi nəticəsində baş verir. İstilik şüalanmasının xarakteri haqqında təsəvvür əldə etmək üçün divarı elektromaqnit dalğalarını keçirməyən qapalı qab daxilində müxtəlif temperaturlu iki cisim fərz edək.
İşıq şüalanması
Nüvə partlayışının işıqlanma sahəsi – işıq şüasının mənbəyi adlanır. Onun əsasını közərmiş hava və müəyyən miqdarda közərmiş partlayış məhsulları təşkil edir. İşıqlanma sahəsində havanın işıqlanma müddəti əsasən nüvə partlayışının gücündən asılı olaraq bir saniyədən bir neçə on saniyəyə qədər davam edir. İşıq şüasının əsas məhvedici təsiri ona əsaslanır ki, müxtəlif örtüklər və bədən quruluşları işıq enerjisini udmağa və qızmağa qadirdirlər. Buna görə işıq şüalarının təsiri nəticəsində müxtəlif sahələrin səthində alışma, yanma, kömürləşmə, ərimə və buxarlanma halları baş verir. İşıq şüalanması - nüvə partlayışı zamanı meydana çıxan od kürəsinin saçdığı gözə görünən ultrabənövşəyi və infraqırmızı işıq selidir. İşıq şüalanmasının zədələyici təsiri işıq impulsundan, yəni işıq şüalarına nisbətən şaquli yerləşmiş səthin hər kv. sm-nə, şüalanma ərzində düşən işıq enerjisinin miqdarından asılı olur və KC/m² ölçülür. İşıq şüalanması yaşayış məntəqələrində və meşələrdə kütləvi yanğınlar törədir, insan bədənində isə müxtəlif dərəcəli yanıqlar əmələ gətirir. İşıq impulsunun miqdarından asılı olaraq insanlar 4 növ yanıqlar ala bilər: – birinci dərəcəli yanıqlar işıq impulsu 80 – 160 KC\m² olarkən əmələ gəlir və bu zaman dərinin qızarması baş verir; – ikinci dərəcəli yanıqlar işıq impulsu 160 – 400 KC\m² olarkən əmələ gəlir və bu zaman dəridə suluqların əmələ gəlməsi baş verir; – üçüncü dərəcəli yanıqlar işıq impulsu 400 – 600 KC\m² olarkən əmələ gəlir və bu zaman dərinin ölməsi baş verir; – dördüncü dərəcəli yanıqlar işıq impulsu 600 KC\m² – dən yuxarı olarkən əmələ gəlir və bu zaman damarların və sümüklərin yanması baş verir.
Bala-başa bəla! (film, 1995)
Bala başa-bəla — tammetrajlı bədii televiziya film-tamaşası. Əsər rejissor Şərif Qurbanəliyev tərəfindən 1995-ci ildə ekranlaşdırılmışdır. Film-tamaşa "Sabah" eksperimental yaradıcılıq emalatxanasında istehsal edilmişdir. Film-tamaşa Əli Əmirlinin "Bala, bəla sözündəndir" pyesinin motivləri əsasında çəkilmişdir. Tamaşanın çəkilişləri Müqəddəs Ramazan ayında olduğu üçün aktyor Cahangir Novruzov oruclu imiş və aktyor üçün ən çətin səhnələrdən biri qonaqlıq səhnəsi olub. Rejissor Şərif Qurbanəliyev film-tamaşada aktyor kimi də iştirak edir. Amma titrlərdə onun adı Şərif Məcbur kimi göstərilib. Səbəbi də bu olub ki, rejissor bu rola aktyor tapa bilməyib, məcburiyyət qarşısında özü ifa etməli olub. İzzət Nəfislinin evində divardan asılan şəkildə Suğra ilə İzzətin uşaqlıq şəklini görürük. Əslində həmin şəkil aktyor Cahangir Novruzovun uşaqlıq şəklidir.
Buzlanma göstəricisi
Buzlanma göstəricisi — buzlanmanın başlanğıcı və sonu haqqında məlumat verən cihaz. == Ümumi təsəvvür == Buzlanma göstəriciləri - qırov, duman, buz yağışları və s. səbəbindən buz və ya şaxtanın meydana gəlməsini yaxından müşahidə edən sadə bir cihazdır. Eni 40–50 mm və uzunluğu 300–400 mm olan rəf alüminium küncü özündə təşkil edir. Quraşdırmanı və sökülməni asanlaşdırmaq üçün, rəflərdən biri verilən şəkildə göstərildiyi kimi pazlarla təchiz olunur. == İstifadə üsulu == Meteoroloji müşahidələr zamanı buzlanma göstəricisi adətən yerin səthindən 2 metr məsafədə bərkidilmiş və meteoroloji budkanın kənar tərəfində yerləşən xüsusi kronşteyndə bərkidilir. Nəzarət olunan göstərici yağıntıların dondurulmasını asanlaşdırmaq üçün üfüqi vəziyyətdə yerləşdirilir. Hər buzlanma təsbit edildikdən sonra, göstərici buz çöküntülərindən təmizlənmiş, lakin ətraf mühitin temperaturu olan yeni bir ilə əvəz olunur. Sonuncu dərhal İstifadə şərtlərini yaratmaq üçün lazımdır.
Buzlanma xəbərdaredicisi
Buzlanma xəbərdaredicisi — texniki vasitələrin buzlanma intensivliyinin davamlı ölçülməsi üçün, operatora və buzlanma əleyhinə avtomatik sistemə məlumat verən qurğu. Bunlar əsasən sənaye zavodlarında təyyarələrin və turbin bıçaqlarının buzlanma nəzarəti üçün istifadə olunur. == Buzlanma xəbərdaredicilərin quruluşu və təsnifatı == Buzlanma xəbərdaredicilərin tərkibinə aşağıdakılar daxildir: buzlanmanın dərəcəsi haqqında siqnal yaradan sensor, siqnalın gücləndirilməsi və müəyyən meyarlar üzrə onun emalı üçün elektron bloklar və operatora məlumatın verilməsi qurğusu. Sensorlarda müxtəlif fiziki prinsiplər istifadə edilə bilər, sensor əməliyyat prinsipinə uyğun olaraq xəbərdaredicilərin bir neçə növü fərqlənir: İstilik xəbərdarediciləri -sensorun temperaturu qızdırıcının gücünün dəyişməsi hesabına daimi saxlanılır, və temperaturun saxlanılması üçün sərf olunan gücdən asılı olaraq, və ətraf havanın temperaturu hesablanır-sensor birbaşa havada yerləşir və ya buz ilə örtülür ; Titrəmə xəbərdarediciləri -onlarda membranın titrəmə tezliyini ölçüsü baş verir, onun vibrasiyalarının həcmi buzla örtüldükdə azalır, buna görə də onların tezliyi artır.Xüsusilə SO-121 və EW-164 bu prinsip üzərində işləyir; Radioizotop xəbərdaredicilər; Optik (optoelektronika) xəbərdaredicilər; Akustik xəbərdaredicilər; Kondensator xəbərdaredicilər;RISO-3 tipli radioizotop xəbərdaredicilər yerli təyyarələrdə buzlanma sensorları kimi geniş istifadə olunur. Xəbərdaredicinin işləmə prinsipi uçuş zamanı sensor pininin həssas səthində böyüyən buz təbəqəsi olan radioaktiv izotopun (strontium-90 + ytrium-90) beta şüalanmasının azalmasına əsaslanır. Şüalanma gücü STS-5 tipli halogen sayğacı tərəfindən qeydə alınır və onun əvvəlcədən təyin edilmiş və onu əvvəlcədən təyin edilmiş işə salınma həddinə qədər azaldıqda elektron blok "buzlanma" siqnalını verir. Sxemin ətalətini azaltmazaltmaq üçün buzlanma zonasına girərkən sensor pininin quraşdırılmış istilik elementi tərəfindən davamlı olaraq qızdırılır. Yerdəki sensorun nisbətən yüksək radioaktivliyi ilə əlaqədar olaraq, qırmızı qurğuşun başlığı (və ya fluoroplast əlavələrlə alüminium) taxılır. == Buzlanma xəbərdaredicilərinin nümunələri == RIO-2M - radioizotop aviasiya; RIO-3 - radioizotop aviasiya; Co-1-istilik-sənaye (qaz-turbin qurğular üçün); СО-4А - aviasiya (mühərriklər üçün); Co-121- titrəmə aviasiya; İSO-16 — aviasiya; EW-164 — aviasiya. == Həmçinin bax == Buzlanma göstəricisi == Ədəbiyyat və sənədlər == === Ədəbiyyat === A. P. Barvinski, Ş.G. Kozlova.
Saxlanma itkisi
Dayaq və ya saxlanma itkisi — mayelər dinamikasında, bir maye içərisində hərəkət edən cismə təsir edən daşıma qüvvəsinin - hücum bucağının (AOA) kritik qiyməti keçməsinə görə - azalması və ya yox olması nəticəsində cismin maye içərisində özünü saxlaya bilməməsidir. Cismin özünü saxlaya bilməməsinin müxtəlif səbəbləri mövcuddur. Ən əsas olan iki səbəb aşağıdakılardır: Daşıyıcı səth üzərində tələb olunan maye sürətinin əldə edilməsinin mümkün olmaması; Nəzarət və ya daşıma səthləri üzərində meydana çıxan axıntı ayrılığı. == Aviavasitələrdə == Aviavasitələrdə dayaq kritik hücum bucağının aşıldığı hər vəziyyətdə “sürətdən müstəqil olaraq” reallaşır. Yəni dayaq bu bucağın keçildiyi bütün sürətlərdə reallaşır.Saxlanma itkisinə bütün qanad məruz qala biləcəyi kimi, nəzarət səthlərinin olduğu qanad hissələri də qala bilər. Hər ikisi də nəzarət itkisinə, dolayı yolla saxlanma itkisinə səbəb olacaqdır. Məsələn, ox bucağı verilmiş qanadlarda qanad ucunda olan nəzarət səthləri, təyyarədən və qanadın hamısından daha əvvəl saxlanma itkisinə uğrayır. Buna görə də, daşınma mərkəzi ağırlıq mərkəzinin qabağına keçir və bu da pozitiv yunuslama momenti meydana gətirir. Yəni təyyarə, burnunu qaldırma meylinə girir. Artıq nəzarət səthləri üzərində hakimiyyət zəiflədiyinə görə, saxlanma qabiliyyəti belə bir vəziyyətdə qəzaya səbəb ola bilər.