TƏNLƏŞMƏK
TƏNTƏNƏ
OBASTAN VİKİ
Tənlik
Tənlik — məchulu olan bərabərlik. Dəyişənin (dəyişənlərin) tənliyi doğru bərabərliyə çevirən qiymətinə (qiymətlərinə) tənliyin kökü deyilir. == Qaydalar == Həqiqi ədədlər meydanında verilmiş tənlik üzərində aşağıdakı çevirmələrdən hər hansı biri aparılarsa, onunla eynigüclü olan tənlik alınar: Tənliyin hər tərəfinə eyni ədədi əlavə etmək olar. Tənliyin hər tərəfindən eyni ədədi çıxmaq olar. Tənliyin hər tərəfini 0-dan fərqli eyni ədədə vurmaq olar. Tənliyin hər tərəfini 0-dan fərqli eyni ədədə bölmək olar. == Növləri == === Birməchullu tənlik === Bir məchulu olan tənliklərə deyilir. Nümunə: x + 1 = 4 , x 2 + 3 = 2 x , 3 x = 9 {\displaystyle x+1=4,~x^{2}+3=2x,~3^{x}=9} === İkiməchullu tənlik === İki məchulu olan tənliklərə deyilir. Məsələn, a, b, c hər hansı ədədlər, x və y məchul olduqda, ax+by=c tənliyində x və y məchul olduqlarına görə ikiməchulludur.
Bircins tənlik
Bircins tənlik f {\displaystyle f} funksiyası bircins funksiya olduqda f ( x 1 , x 2 , … , x n ) = 0 {\displaystyle f(x_{1},x_{2},\dots ,x_{n})=0} şəklində tənlik. Əgər f ( λ x 1 , λ x 2 , … , λ x n ) = λ m ⋅ f ( x 1 , x 2 , … , x n ) {\displaystyle f(\lambda x_{1},\lambda x_{2},\dots ,\lambda x_{n})=\lambda ^{m}\cdot f(x_{1},x_{2},\dots ,x_{n})} olarsa, ( λ ∈ R , m ∈ N ) {\displaystyle (\lambda \in R,m\in N)} f {\displaystyle f} funksiyasına m {\displaystyle m} tərtibli bircins funksiya deyilir. x 1 = x 1 ( t ) , x 2 = x 2 ( t ) , … x n = x n ( t ) , {\displaystyle x_{1}=x_{1}(t),x_{2}=x_{2}(t),\dots x_{n}=x_{n}(t),} olarsa, verilən bircins tənlik birdəyişənli olur. Əgər f {\displaystyle f} funksiyası çoxhədlidirsə,bu çoxhədlinin bütün hədlərinin qüvvətləri m {\displaystyle m} -ə bərabər olur. Məsələn, 3 2 t − 5 ⋅ 6 t + 6 ⋅ 2 2 t = 0 {\displaystyle 3^{2t}-5\cdot 6^{t}+6\cdot 2^{2t}=0} tənliyi x = 3 t {\displaystyle x=3^{t}} və y = 2 t {\displaystyle y=2^{t}} dəyişənlərinə görə 2 tərtibli bircins tənlikdir. == Xarici keçidlər == Г.М. Фихтенгольц. КУРС ДИФФЕРЕНЦИАЛЬНОГО И ИНТЕГРАЛЬНОГО ИСЧИСЛЕНИЯ. ТОМ 1.
Eynigüclü tənlik
Eynigüclü tənlik — əgər, f 1 ( x ) = g 1 ( x ) {\displaystyle f_{1}(x)=g_{1}(x)} tənliyinin hər bir kökü f 2 ( x ) = f 2 ( x ) {\displaystyle f_{2}(x)=f_{2}(x)} tənliyinin kökü və ya əksinə, f 2 ( x ) = g 2 ( x ) {\displaystyle f_{2}(x)=g_{2}(x)} tənliyinin hər bir kökü f 1 ( x ) = g 1 ( x ) {\displaystyle f_{1}(x)=g_{1}(x)} tənliyinin kökü olarsa, belə tənliklərə eynigüclü tənliklər deyilir.
Funksional tənlik
Funksional tənlik — məchulu funksiya olan tənlik. Axtarılan funksiya müəyyən əməliyyatlarla (mürəkkəb funksiyanın əmələ gəlməsi əməliyyatları ilə) verilən məlum funksiyalarla bağlı olur. Adətən, axtarılan funksiyanın aid olduğu funksiyalar sinfi göstərilir. Məsələn, f ( x + y ) = f ( x ) + f ( y ) {\displaystyle f(x+y)=f(x)+f(y)} . Burada f {\displaystyle f} axtarılan funksiyadır. Bu funksional tənliyin həlli f ( x ) = α x {\displaystyle f(x)=\alpha x} funksiyasıdır(əgər tənliyin həlli kəsilməz funksiyalar sinfinə aiddirsə). f ( x y ) = f ( x ) + f ( y ) {\displaystyle f(xy)=f(x)+f(y)} və f ( x + y ) = f ( x ) ⋅ f ( y ) {\displaystyle f(x+y)=f(x)\centerdot f(y)} tənliklərinin kəsilməz həlləri, uyğun olaraq, y = l n x {\displaystyle y=lnx} və y = e x {\displaystyle y=e^{x}} funksiyalarıdır. Tək və cüt funksiyaların, dövri funksiyaların tərifləri funksional tənliklər vasitəsilə verilir.
Kvadrat tənlik
Kvadrat tənlik — a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} , ( a ≠ 0 {\displaystyle a\neq 0} ) şəklində olan tənliyə deyilir. Burada a, b, c sabit ədədlər, x isə məchuldur. a - birinci əmsal, b - ikinci əmsal, c - sərbəst hədd adlanır. Birinci həddin əmsalı (yəni a) 1-ə bərabər olan kvadrat tənlik Çevrilmiş kvadrat tənlik adlanır. Məsələn: ax²+bx+c=0 tənliyinin hər iki tərəfini a-ya bölməklə, x²+ b/a x +c/a=0 tənliyini alarıq. Burada b/a=p, c/a=q işarə etməklə, onu x²+px+q=0 şəklində yazmaq olar x²+px+q=0 𝐭ə𝐧𝐥𝐢𝐲𝐢𝐧ə ç𝐞𝐯𝐫𝐢𝐥𝐦𝐢ş 𝐤𝐯𝐚𝐝𝐫𝐚𝐭 𝐭ə𝐧𝐥𝐢𝐤 𝐝𝐞𝐲𝐢𝐥𝐢𝐫. 2x²-6x-8=0 tənliyinin hər iki tərəfini 2-yə bölməklə, onunla eynigüclü olan x²-3x-4=0 çevrilmiş kvadrat tənliyi alarıq == Viyet teoremi == Çevrilmiş kvadrat tənlikdə tənliyin kökləri cəmi əks işarə ilə ikinci əmsala, kökləri hasili isə sərbəst həddə bərabərdir. Viyet teoreminin tərsi-Tərs Teorem:m və n ədədlərinin cəmi p-yə hasili isə q-ya bərabər olarsa, bu ədədlər x²+px+q=0 tənliyinin kökləridir. İsbat: Tənlikdə x=m yazsaq, m²-(m+n)×m+mn=m²-m²-mn+mn=0 olduğunu alarıq, yəni m ədədi tənliyi ödəyəndir. x=n ədədinin də tənliyin kökü olduğunu eyni qayda ilə göstərmək olar.
Elektrik neytrallıq tənlik
Adi diferensial tənliklər
Sərbəst dəyişən x {\displaystyle x} , axtarılan funksiya y ( x ) {\displaystyle y\left(x\right)} və onun törəməsi y ′ ( x ) {\displaystyle y^{\prime }\left(x\right)} arasıda verilmiş F ( x , y , y ′ ) = 0 ( 1 ) {\displaystyle F\left(x,y,y^{\prime }\right)=0\,\,\,(1)} münasibətinə birtərtibli adi diferensial tənlik deyilir.Aydındır ki, F ( x , y , z ) {\displaystyle F\left(x,y,z\right)} funksiyası x , y {\displaystyle x,y} dəyişənlərinin birindən və ya hər ikisindən asılı olmaya da bilər, lakin (1) tənliyinin diferensial tənlik olması üçün bu funksiya z {\displaystyle z} - dən hökmən asılı olmalıdır. y ′ = f ( x , y ) ( 2 ) {\displaystyle y^{\prime }=f\left(x,y\right)\,\,\,\,\,\,\,(2)} şəklində olan tənliyə törəməyə nəzərən həll olunmuş birtərtibli aid diferensial tənlik deyilir.Tutaq ki, f ( x , y ) {\displaystyle f\left(x,y\right)} funksiyası X O Y {\displaystyle XOY} müstəvisinin muəyyən bir D {\displaystyle D} oblastında təyin olunmuşdur.Оblast dedikdə, aşağıdakı 2 şərtini ödəyən boş olmayan D {\displaystyle D} nöqtələr çoxluğu başa düşülür: 1) D {\displaystyle D} açıq çoxluqdur, yəni onun hər bir nöqtəsi özünün müəyyən bir ətrafı ilə bu çoxluğa daxildir; 2) D {\displaystyle D} çoxluğu əlaqəli çoxluqdur, yəni onun istənilən iki nöqtəsini tamamilə D {\displaystyle D} – nin daxilində yerləşən və təşkilediçilərinin sayı sonlu olan sınıq xətt vasitəsilə birləşdirmək olar.Tərif. Əgər ( a , b ) {\displaystyle \left(a,b\right)} inteqralında diferensiallanan y = φ ( x ) {\displaystyle y=\varphi \left(x\right)} funksiyası 1. ( x , φ ( x ) ) ∈ D , x ∈ ( a , b ) 2. φ ( x ) = f ( x , φ ( x ) ) , x ∈ ( a , b ) {\displaystyle {\begin{array}{l}{1.\,\left(x,\varphi \left(x\right)\right)\in D,\,\,x\in \left(a,b\right)}\\{2.\,\varphi \left(x\right)=f\left(x,\varphi \left(x\right)\right),\,\,x\in \left(a,b\right)}\end{array}}} şərtlərini ödəyirsə, həmin funksiyaya (2) tənliyinin ( a , b ) {\displaystyle \left(a,b\right)} intervalında həlli deyilir. Bəzən diferensial tənliyin həllinin qeyri – aşkar funksiya kimi və ya parametrik şəkildə tapmaq əlverişli olur.Tərif. Əgər ϕ ( x , y ) = 0 ( 3 ) {\displaystyle \phi \left(x,y\right)=0\,\,\,\,\,\,\,\,\,(3)} bərabərliyindən qeyri – aşkar funksiya kimi təyin olunan y = φ ( x ) {\displaystyle y=\varphi \left(x\right)} funksiyası (2) tənliyinin həlli olarsa, (3) münasibətinə (2) tənliyinin qeyri – aşkar şəkildə həlli deyilir.Tərif. Parametrik şəkildə verilmiş x = φ ( x ) , y = ψ ( t ) , t ∈ ( α , β ) ( 4 ) {\displaystyle x=\varphi \left(x\right),y=\psi \left(t\right),t\in \left(\alpha ,\beta \right)\,\,\,\,\,\,\,(4)} funksiyası hər bir t {\displaystyle t} üçün: 1) ( φ ( t ) , ψ ( t ) ) ∈ D {\displaystyle \left(\varphi \left(t\right),\psi \left(t\right)\right)\in D} 2) x ′ = φ ′ ( t ) , y ′ = ψ ′ ( t ) , ( φ ′ ( t ) ≠ 0 ) {\displaystyle x^{\prime }=\varphi ^{\prime }\left(t\right),y^{\prime }=\psi ^{\prime }\left(t\right),\left(\varphi ^{\prime }\left(t\right)\neq 0\right)} sonlu törəmələri və 3) ψ ′ ( t ) φ ′ ( t ) = f ( φ ( t ) , ψ ( t ) ) {\displaystyle {\frac {\psi ^{\prime }\left(t\right)}{\varphi ^{\prime }\left(t\right)}}=f\left(\varphi \left(t\right),\psi \left(t\right)\right)} bərabərliyi ödənirsə, onda (4) funksiyasına (2) tənliyinin ( α , β ) {\displaystyle \left(\alpha ,\beta \right)} inteqralında parametrik şəklində həlli deyilir.Misallar: 1. y ′ = 2 x {\displaystyle y^{\prime }=2x} tənliyi birtərtibli aidi diferensial tənlikdir. İnteqral hesabından bilirik ki, onun həlli y = x 2 + c ( − ∞ < x < + ∞ ) {\displaystyle y=x^{2}+c\,\,\left(-\infty <x<+\infty \right)} düsturu ilə təyin olunur. Bu düsturdan görürük ki, y ′ = 2 x {\displaystyle y^{\prime }=2x} tənliyi bir yox, sonsuz sayda həllə malikdir.
Diferensial tənliklər
Riyaziyyatda diferensial tənlik bir və ya daha çox funksiya və onların törəmələrini əlaqələndirən bir tənlikdir. Bu cür münasibətlər olduqca yaygın olduğundan, diferensial tənliklər mühəndislik, fizika, iqtisadiyyat və biologiya da daxil olmaqla bir çox fənlərdə məşhur rol oynayır. Diferensial tənliklərin öyrənilməsi əsasən onların həllərinin (tənliyi ödəyən edən funksiyaların məcmusu) və həllərinin xüsusiyyətlərinin öyrənilməsindən ibarətdir. Yalnız ən sadə diferensial tənliklər açıq formullarla həll edilə bilər; lakin verilmiş bir diferensial tənliyin həllərinin bir çox xüsusiyyətləri onları dəqiq hesablamadan müəyyən edilə bilər. Həlllər üçün qapalı formalı bir ifadə olmadıqda, kompüterlər istifadə edilərək sayları yaxınlaşdırıla bilər. Dinamik sistemlər nəzəriyyəsi, diferensial tənliklərlə təsvir olunan sistemlərin keyfiyyətcə təhlilinə diqqət yetirir, halbuki müəyyən bir dəqiqlik dərəcəsi ilə həlli təyin etmək üçün bir çox sayda metod hazırlanmışdır. == Tarix == Diferensial tənliklər əvvəlcə Nyuton və Leybnits tərəfindən hesablama ixtirası ilə meydana gəldi. Onun 1671-ci il iş metodu 2-ci hissəsində Methodus fluxionum et Serierum Infinitarum, İsak Nyuton üç növ diferensial tənlikləri sadaladı: d y d x = f ( x ) d y d x = f ( x , y ) x 1 ∂ y ∂ x 1 + x 2 ∂ y ∂ x 2 = y {\displaystyle {\begin{aligned}&{\frac {dy}{dx}}=f(x)\\[5pt]&{\frac {dy}{dx}}=f(x,y)\\[5pt]&x_{1}{\frac {\partial y}{\partial x_{1}}}+x_{2}{\frac {\partial y}{\partial x_{2}}}=y\end{aligned}}} Bütün bu hallarda, y ( x ) və ya bilinməyən bir funksiyadır x 1 {\displaystyle x_{1}} və x 2 {\displaystyle x_{2}} ) və f verilən bir funksiyadır. Sonsuz seriyalardan istifadə edərək bu nümunələri və digərlərini həll edir və həllərin qeyri-bərabərliyini müzakirə edir. Yakob Bernulli 1695-ci ildə Bernoulli diferensial tənliyini təklif etdi.
Eynşteyn sahə tənlikləri
Eynşteyn sahə tənlikləri — qravitasiyanın, əslində fəza-zamanın kütlə və enerji tərəfindən əyilməsi ilə meydana çıxan anlayış olduğunu riyazi şəkildə göstərən 10 tenzorial tənlikdən ibarət sistemdir. Eynşteyn tenzoru ilə ifadə olunan fəza-zamandakı lokal əyriliyi həmin sahədə yerləşən və gərginlik-enerji tenzoru ilə ifadə olunan maddə ilə əlaqələndirən bu tənliklər, 1915-ci ildə Albert Eynşteyn tərəfindən Ümumi Nisbilik Nəzəriyyəsində irəli sürülmüşdür. Sahə tənlikləri bu formada olub, G μ ν + Λ g μ ν = 8 π G c 4 T μ ν {\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu }} G μ ν {\displaystyle G_{\mu \nu }} — Eynşteyn tenzorunu, Λ {\displaystyle \Lambda } — Kosmoloji sabiti, g μ ν {\displaystyle g_{\mu \nu }} — metrik tenzoru T μ ν {\displaystyle T_{\mu \nu }} — Gərginlik-enerji tenzorunu, G {\displaystyle G} və c {\displaystyle c} isə uyğun olaraq Qravitasiya Sabiti və işıq sürətini göstərir. Beləcə 4 ölçülü fəza-zamanda hər μ {\displaystyle \mu } və ν {\displaystyle \nu } komponenti üçün 4 tənlik olmaqla cəmi 16 tənlik olmalıdır. Lakin tənlikdəki bütün tenzorlar simmetrik olduğundan( X μ ν = X ν μ {\displaystyle X_{\mu \nu }=X_{\nu \mu }} ) eynicinsli tənlikləri çıxmaqla bir-birindən ayrı 10 tənlik qalır. === Eyşteyn tenzoru === Eynşteyn tenzoru Riemann tenzorunun 2 indeksi üzrə cəmlənməsindən ( R μ ν = R μ λ ν λ {\displaystyle R_{\mu \nu }=R_{\;\mu \lambda \nu }^{\lambda }} ) əmələ gələn Rikki tenzoru üzərində qurulur və enerji-impuls tenzoru ilə mütənasib olub fəza-zaman əyriliyini xarakterizə edən tenzor olaraq Eynşteyn tərəfindən gətirilib: G μ ν = R μ ν − 1 2 R g μ ν , {\displaystyle G_{\mu \nu }=R_{\mu \nu }-{\tfrac {1}{2}}R\,g_{\mu \nu },} burada R μ ν {\displaystyle R_{\mu \nu }} — Rikki tenzoru, R {\displaystyle R} — Rikki skalyarıdır( R = R α β g α β {\displaystyle R=R_{\alpha \beta }g^{\alpha \beta }} ). Eynşteyn tenzorunun Rikki tenzorundan əsas fərqləndirici xüsusiyyəti, onun gərginlik-enerji tenzoru kimi konservativ olmasıdır: ∇ μ G μ ν = 0 {\displaystyle \nabla ^{\mu }{G_{\mu \nu }}=0} . Eynşteyn tenzorunun açılışını nəzərə alsaq, sahə tənlikləri R μ ν − 1 2 R g μ ν + Λ g μ ν = 8 π G c 4 T μ ν {\displaystyle R_{\mu \nu }-{1 \over 2}R\,g_{\mu \nu }+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu }} şəklində ifadə olunar. == Kosmoloji sabit == Sahə tənlikləri ilk dəfə kosmoloji sabit faktoru olmadan, bu şəkildə yazılmışdı: G μ ν = 8 π G c 4 T μ ν . {\displaystyle G_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu }.} Daha sonra Eynşteyn, Ümumi Nisbilik Nəzəriyyəsini kainatı modelləşdirmək üçün tətbiq etdikdə mövcud tənliklər, kainatın ya daim genişlənəcəyinə, ya da tək bir sinqulyar nöqtəyə çökməli olduğuna dəlalət edirdi.
Maksvell tənlikləri
Maksvell tənlikləri - xüsusi differensial tənliklər toplusudur, bu tənliklər Lorens qüvvəsi ilə birlikdə klassik elektromaqnetizm, klassik optika və elektrik şəbəkələrinin fundamental qanunlarıdır. Dəyişən maqnit sahəsində yerləşən hərəkətsiz naqildə induksiya cərəyanının yaranmasının səbəbi hər bir dəyişən maqnit sahəsinin ətraf fəzada elektrik sahəsi yaratmasıdır. Elektromaqnit induksiya qanununun aşağıdakı kimi ifadə edilməsi Maksvellə məxsusdur: Zamana görə dəyişən hər bir maqnit sahəsi ətraf fəzada elektrik sahəsi yaradır. Maksvellə görə əksinə elektromaqnit induksiyasının mahiyyəti hər şeydən əvvəl cərəyanın deyil, elektrik sahəsinin həyacanlanmasından ibarətdir. Elektromaqnit induksiyası fəzada hər hansı naqil olmadıqda belə müşahidə oluna bilər. Qapalı naqili dəyişən maqnit sahəsinə daxil etdikdə induksiya cərəyanının yaranması, maqnit sahəsinin dəyişməsi nəticəsində yaranan E elektrik sahəsinin təzahürlərindən biridir. Induksiya qanununun Maksvell izahı Faradey izahına nəzərən daha ümumidir. O elektrodinamikanın ən mühüm ümumiləşdirilmələri sırasına daxildir. == Tənliklər == Bu nəzəriyyənin riyazi ifadəsi rolunu, inteqral və differensial formada yazılması qəbul edilmiş Maksvellin dörd tənliyi oynayır. Differensial tənliklər, vektor analizinin iki teoremi-Qauss və Stoks teoremlərinin köməyi ilə inteqral tənliklərdən alınır.
Xətti tənliklər sistemi
Xətti tənliklər sistemi mövzusunun elementləri hələ orta məktəbdə tədris olunmağa başlayır. Ən sadə xətti tənliklər sistemi { a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2 {\displaystyle {\begin{cases}a_{1}x+b_{1}y=c_{1}\\a_{2}x+b_{2}y=c_{2}\end{cases}}} şəklində olan sistemdir. Burada a 1 , b 1 , c 1 , a 2 , b 2 , c 2 {\displaystyle a_{1},b_{1},c_{1},a_{2},b_{2},c_{2}} verilmiş əmsallar, x {\displaystyle x} və y {\displaystyle y} isə dəyişənlərdir. Aydındır ki, hansı tənliyi birinci və hansını ikinci yazmağın əhəmiyyəti yoxdur. Ona görə də a 1 ≠ 0 {\displaystyle a_{1}\neq 0} qəbul edə bilərik. Orta məktəbdə belə sistemin həlli üçün təklif olunan üsullardan biri cəbri toplama üsulu adlanan üsuldur. Bu üsulun mahiyyəti aşağıdakı kimidir. Birinci tənliyin hər iki tərəfini − a 2 a 1 − 1 {\displaystyle -a_{2}a_{1}^{-1}} ədədinə vuraq: − a 2 x − b 1 a 2 a 1 − 1 y = − c 1 a 2 a 1 − 1 {\displaystyle -a_{2}x-b_{1}a_{2}a_{1}^{-1}y=-c_{1}a_{2}a_{1}^{-1}} alınan tənliyi ikinci tənliklə toplayıb, hər tərəfi yenidən a 1 {\displaystyle a_{1}} -ə vuraq. Əgər b 2 a 1 − b 1 a 2 ≠ 0 {\displaystyle b_{2}a_{1}-b_{1}a_{2}\neq 0} olarsa, alarıq: ( b 2 a 1 − b 1 a 2 ) y = c 2 a 1 − c 1 a 2 {\displaystyle (b_{2}a_{1}-b_{1}a_{2})y=c_{2}a_{1}-c_{1}a_{2}} və ya y = c 2 a 1 − c 1 a 2 b 2 a 1 − b 1 a 2 {\displaystyle y={\frac {c_{2}a_{1}-c_{1}a_{2}}{b_{2}a_{1}-b_{1}a_{2}}}} . Alınan qiyməti birinci tənlikdə yerinə yazmaqla x {\displaystyle x} -i də tapmaq olar.

Digər lüğətlərdə