Silinmənin Sürətli Üsulu

əsas vəsaitlərin istismarının başlanğıcında hesablanan amortizasiya, istismar müddətinin sonunda hesablanan amortizasiyadan daha çox olmasına əsaslanan amortizasiya hesablamaları üsuludur. Bu metoddan ona görə istifadə olunur ki, əsas vəsaitlər təzə olduğundan daha yüksək istehsal keyfiyyətinə malik olur. Odur ki, daha çox amortizasiya xərcləri ilk illərə hesablanır.
Sifarişlər Əsasında, Təkliflər əsasında
Simetalizm
OBASTAN VİKİ
Sürətli likvidlik
Sürətli (tez) likvidlik nisbəti (ing. Quick ratio, Acid test, QR) — yüksək likvidli cari aktivlərin qısamüddətli öhdəliklərə (uzunmüddətli öhdəliklər) nisbətinə bərabər olan maliyyə əmsalı. Məlumat mənbəyi cari likvidliklə eyni şəkildə şirkətin balans hesabatıdır, lakin ehtiyatlar aktivlər kimi nəzərə alınmır, çünki satılmağa məcbur edilərsə, itkilər bütün dövriyyə kapitalı arasında ən böyük olacaqdır. Müəssisənin qısamüddətli öhdəliklərini ən likvid aktivlərlə ödəmək qabiliyyətini göstərir. К бл = Cari aktivlər − Ehtiyatlar Cari məsuliyyət {\displaystyle {\mbox{К}}_{\mbox{бл}}={{\mbox{Cari aktivlər}}-{\mbox{Ehtiyatlar}} \over {\mbox{Cari məsuliyyət}}}} və ya К бл = Qısamüddətli debitor borcları + Qısamüddətli maliyyə investisiyaları + Qısamüddətli öhdəliklər Təxirə salınmış gəlir − Gələcək xərclər üçün ehtiyatlar − Gələcək xərclər üçün ehtiyatlar {\displaystyle {\mbox{К}}_{\mbox{бл}}={{\mbox{Qısamüddətli debitor borcları}}+{\mbox{Qısamüddətli maliyyə investisiyaları}}+{\mbox{Qısamüddətli öhdəliklər}} \over {\mbox{Təxirə salınmış gəlir}}-{\mbox{Gələcək xərclər üçün ehtiyatlar}}-{\mbox{Gələcək xərclər üçün ehtiyatlar}}}} Бригхэм Ю., Эрхардт М. Анализ финансовой отчётности // Финансовый менеджмент (10-е изд). СПб.: Питер. Пер. с англ. под. ред.
Basma üsulu
Basma üsulu - fırlanma səthinə malik hissələrin təzyiq altında emalı üçün tətbiq olunur. Bu üsulun səciyyəvi göstəricisi ondan ibarətdir ki, deformasiya zamanı alətlə pəstah arasında təmas presləmə, ştamplama və döymə kimi üsullardan fərqli olaraq lokal baş verir. Yəni alət kiçik xətt və ya sahə üzrə pəstahla kontakta girərək onu addım-addım plastiki deformasiya etdirir. Emaldan sonra divarın qalınlığı sabit qalır. Pəstahın fırlanması sayəsində alətin trayektoriyası pəstah üzrə qalxımı kiçik olan vintvari iz buraxır. Alətin verişi kiçik olduğundan pəstahın bəzi sahələri dəfələrlə plastikiləşmə prosesindən keçir. Basma zamanı metal lövhədən olan pəstah orta hissəsindən dayaqla matrisaya sıxılaraq fırladılır. Eninə supportda bərkidilmiş alət yandan pəstaha yaxınlaşır və onu tədricən deformasiya edərək basma patronun üzərinə sıxır. Üsulun texnoloji imkanları toxunan gərginlikləri sayəsində qırışların, toxunan və radial istqamətlərdə çatların yaranması ilə müəyyən olunur. Şəkildə basma üsulu ilə əldə edilmiş hissələr təsvir olunmuşdur.
Dekripitasiya üsulu
Dekripitasiya üsulu - belə bir təsəvvürə əsaslanır ki, mineralın böyüməsi dövründə zəbt etdiyi birfazalı flüid və ya məhlul soyuduqda və təzyiq aşağı düşdükdə maye, qaz və bəzən bərk fazalara parçalanır, mineralı qızdırdıqda isə proses əks istiqamətdə gedir və möhtəvinin bir fazalıya çevriləməsinədək davam edir. Təzyiq və konsentrasiyaya düzəlişlər etdikdən sonra möhtəvinin partlayış temperaturu, mineralın əmələ gəlmə temperaturu kimi qəbul edilir. Partlayış temperaturu ossiloqraf, elektromexaniki sayğac və başqa cihazlar vasitəsilə qeydə alınır. Sinonim: Termosəs üsulu. Mineral Maye Qaz Geologiya terminlərinin izahlı lüğəti. Bakı: Nafta-Press. 2006. 679.
Elektroerrozion üsulu
Elektroerrozion üsulu- mexaniki emala tamamlayıcı bir üsul olub elektrik keçirən hissələrin hazırlanmasında tətbiq olunur. Mürəkkəb metallik hissələrin hazırlanmasında bu üsulun yeri əvəz olunmazdır. Çünki, frezləmə üsulunun tətbiqi verilən hissənin həndəsəsindən asılıdır. Böyük dərinlikdə (> 200 mm) yerləşən mürəkkəb konturların effektiv frezlənməsi alətin uzunluğunun məhdud olmasına görə və ya da dəqiqlik baxımından mümkün deyildir. Belə səthlərin emalını elketroerrozion üsulu ilə aparmaq əlverişlidir. Bu üsulun ən çox tətbiq olunduğu sahə dəmir tərkibli metal formaların hazırlanmasıdır. Elektroerrozion üsulunda metalların emalının iki variantını göstərmək olar: elektrodla emal; məftillə emal. Bü iki kəsmə variantını birləşdirən onların eyni fiziki prinsipə malik olmasıdır. Elektroerrozion üsulu ilk dəfə olaraq rus alimləri Lazarenko B.R. və Zolotıx B.N. tərəfindən ixtira edilərək, onun elekrtotermiki nəzəriyyəsi işlənmişdir. Prosesin iş prinsipi emal olunan səthlərin elektrolit bir mühitdə erroziyasına, yəni aşınmasına əsaslanır.
Eyler üsulu
Ardıcıl yaxınlaşma üsulunda hər bir yaxınlaşmada müəyyən inteqrallar hesablanır. Əksər hallarda müəyyən inteqralları dəqiq üsullarla hesablamaq mümkün olmur və təqribi üsullardan istifadə olunur. Tutaq ki, y ′ ( x ) = f ( x , y ) {\displaystyle y^{\prime }(x)=f(x,y)} diferensial tənliyinin y ( x 0 ) = y 0 {\displaystyle y(x_{0})=y_{0}} başlanğıc şərtini ödəyən həllini [ a , b ] {\displaystyle [a,b]} parçasında tapmaq tələb olunur [ a , b ] {\displaystyle [a,b]} parçasını h {\displaystyle h} addımı ilə n {\displaystyle n} bərabər hissəyə bölək: h = b − a n , x i = x 0 + i h , ( i = 0 , 1 , 2 , … ) {\displaystyle h={\frac {b-a}{n}},x_{i}=x_{0}+ih,(i=0,1,2,\ldots )} [ x k , x k + 1 ] {\displaystyle [x_{k},x_{k+1}]} parçasında tənliyini inteqrallayaq. ∫ x k x k + 1 y ′ ( x ) d x = ∫ x k x k + 1 f ( x , y ) d x {\displaystyle \int \limits _{x_{k}}^{x_{k+1}}y^{\prime }(x)\,dx=\int \limits _{x_{k}}^{x_{k+1}}f(x,y)\,dx} y ( x ) | x k x k + 1 = ∫ x k x k + 1 f ( x , y ) d x ⇒ y ( x k + 1 ) = y ( x k ) + ∫ x k x k + 1 f ( x , y ) d x {\displaystyle y(x)|_{x_{k}}^{x_{k+1}}=\int \limits _{x_{k}}^{x_{k+1}}f(x,y)\,dx\Rightarrow y(x_{k+1})=y(x_{k})+\int \limits _{x_{k}}^{x_{k+1}}f(x,y)\,dx} (1) [ x k , x k + 1 ] {\displaystyle [x_{k},x_{k+1}]} parçasında f ( x , y ) {\displaystyle f(x,y)} funksiyasının qiymətini sabit, ( x k , y k ) {\displaystyle (x_{k},y_{k})} nöqtəsindəki qiymətinə bərabər götürsək (1) aşağıdakı kimi yazılar: y ( x k + 1 ) = y ( x k ) + f ( x k , y k ) ( x k + 1 − x k ) = y ( x k ) + f ( x k , y k ) h {\displaystyle y(x_{k+1})=y(x_{k})+f(x_{k},y_{k})(x_{k+1}-x_{k})=y(x_{k})+f(x_{k},y_{k})h} (2) (2) ( x k , y k ) {\displaystyle (x_{k},y_{k})} nöqtəsində tənliyin y ( x ) {\displaystyle y(x)} həllinə çəkilmiş toxunanın tənliyidir. Sanki [ x k , x k + 1 ] {\displaystyle [x_{k},x_{k+1}]} parçasında tənliyin həlli abisisi x k {\displaystyle x_{k}} olan nöqtədə çəkilmiş toxunana paralel və ( x k , y k ) {\displaystyle (x_{k},y_{k})} nöqtəsindən keçən düz xətt parçası ilə əvəz olunur. Nəticədə həllə yaxın sınıq xətləri alırıq ki, bu sınıq xəttə Eyler sınıq xətti deyilir.
Keys üsulu
Keys üsulu və ya Keys metodu (ing. Case method; case-study) Hadisənin öyrənilməsi (case study) hadisəni yaradan səbəblərin, onun hərəkət verici amillərinin aşkara cıxarılması məqsədilə bu hadisənin bütün dərinliyi ilə tədqiq edilməsindən ibarətdir. Hadisə öyrənilməsi metodundan təhsil, sosial psixologiya, sosiologiya, siyasət, iqtisadiyyat kimi sahələrdə istifadə edilir. Məsələn, sahibkar olmaq istəyən bir şəxsin, öz işini açarkən keçdiyi mərhələləri öyrənmək və analiz etmək bu sahədəki çatışmazlıqlar və hansı addımlar atılarsa onların aradan qaldırıla bıləcəyi haqqında qiymətli məlumatlar verə bilər. Psixologiya sahəsində son dövrlərə qədər hadisənin öyrənilməsindən ən çox istifadə olunan yer neyropsixologiya idi. Tədqiqiatçılar beynin müxtəlif sahələrinin zədələnməsinə məruz qalmış insanların davranışındakı dəyişiklikləri öyrənərək sinir sisteminin fəaliyyəti haqqında dəyərli məlumatlar əldə edə bilirlər. Gündəlik psixologiyada isə insan davranışının, onun səbəblərinin öyrənilməsi üçün uzun müddət ümumiyyətlə kəmiyyət tədqiqiatlarına üstünlük verilmişdir, həm də tədqiqatlar daha çox laboratoriya təcrübələri üzərində qurulmuşdur. Lakin son illər təbii şəraitdə aparılan və ümumi şəkildə çöl tədqiqatları adlanan üsullara diqqət yetirilməyə başlandı. Bir çox tədqiqatçılar psixologiyanın gələcəyinin məhz təbii şəraitdə aparılan tədqiqatlar üzərində qurulacağını ehtimal edirlər. Tədqiqat metodlarına aid ədəbiyyatda hadisənin öyrənilməsi üsulunun bir neçə tipi göstərilir.
Kramer üsulu
Kramer üsulu — xətti cəbrdə xətti tənliklər sisteminin həlli üsuludur. Bu üsul 2021-ci ildə onu dərc etmiş Qabriel Kramerin adına adlandırılıb. Lakin Kolin Maklaurin də həmçinin bu üsulu 1748-ci ildə dərc etmişdi (və ehtimalən 1729-cu ildə bu üsul barədə bilirdi). Tutaq ki, kvadrat xətti tənliklər sistemi (<yəni n {\displaystyle n} məchullu n {\displaystyle n} tənlik) verilmişdir { u j a 11 x 1 + a 12 x 2 + … + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + … + a 2 n x n = b 2 … … … … … a m 1 x 1 + a m 2 x 2 + … + a m n x n = b m , ( 1 ) {\displaystyle {\begin{cases}uja_{11}x_{1}&+a_{12}x_{2}&+\dots &+a_{1n}x_{n}&=b_{1}\\a_{21}x_{1}&+a_{22}x_{2}&+\dots &+a_{2n}x_{n}&=b_{2}\\\dots &\dots &\dots &\dots &\dots \\a_{m1}x_{1}&+a_{m2}x_{2}&+\dots &+a_{mn}x_{n}&=b_{m}\end{cases}},(1)} və əsas matrisin determinantı sıfırdan fərqlidir. Δ = | a 11 a 12 … a 1 n a 21 a 22 … a 2 n … … … a n 1 a n 2 … a n n | ≠ 0 , ( 2 ) {\displaystyle \Delta ={\begin{vmatrix}a_{11}&a_{12}\dots &a_{1n}\\a_{21}&a_{22}\dots &a_{2n}\\&\dots &\dots &\dots \\a_{n1}&a_{n2}\dots &a_{nn}\\\end{vmatrix}}\neq 0,(2)} Tutaq ki, x 1 , x 1 , . . . , x n {\displaystyle x_{1},x_{1},...,x_{n}} (1) sisteminin hər hansı bir həllidir. Onda (1) bərabərliklərini uyğun olaraq əsas matrisin Δ {\displaystyle \Delta } determinantının hər hansı j {\displaystyle j} sütunun ( j = 1 , n → {\displaystyle j={\overrightarrow {1,n}}} ) elementlərinin A 1 j , x 1 j , . .
Kütuclular üsulu
“kütuclular" üsulu – ədədin yaddaşda saxlanma üsulu; bu halda ən qiymətli bayt ədədin birinci baytı olur. Məsələn, onaltılıq A02B ədədi yaddaşda “kütuclular” üsulu ilə A02B şəklində, “sivriuclular” üsulu ilə isə 2BA0 şəklində saxlanılır. Birinci üsuldan Motorola şirkətinin, ikincidən isə Intel şirkətinin mikroprosessorlarında istifadə olunur. Bu termin öz mənşəyini Conatan Svift’in “Qulliverin səyahəti” əsərindən alır: imperatorun əmrinə görə yumurtanı yalnız sivri icundan sındırıb yemək olar. Bu əmrə tabe olmaqdan imtina edən bir qrup adamı “kütuclular” adlandırırdılar. İsmayıl Calallı (Sadıqov), “İnformatika terminlərinin izahlı lüğəti”, 2017, “Bakı” nəşriyyatı, 996 s.
Makrometeorologiya üsulu
Makrometeorologiya üsulu vasitəsilə atmosferin ümumi sirkulyasiyasının xarakterinin uzunmüddətli dəyişməsinin və bununla əlaqədar olaraq müxtəlif coğrafi rayonlarda havanın proqnozunu hazırlamaq mümkündür. Sinoptik meteorologiyada olduğu kimi, makrometeorologiyada da bir çox hallarda sinoptik üsuldan istifadə edilir. Makrometeorologiya üsulunu sinoptik üsuldan fərqləndirən bir sıra xüsusiyyətlər mövcuddur. Bunlara öyrənilən proseslərin zaman və məkana görə müxtəlif miqyasda dəyişməsini aid etmək olar. Məsələn, qısamüddətli proqnoz ucun ilkin yanaşmada baxılan nisbətən böyük olmayan rayonun cari və bir-iki gün əvvəlki sinoptik və yüksəklik xəritələrinin təhlili ilə kifayətlənmək olursa, uzunmüddətli proqnozlar ucun bunlar azdır. Burada bir necə günü, həftəni, hətta bir necə ayı əhatə edən proseslərin təhlili lazımdır.
Müqayisə üsulu
Nyuton üsulu
Nyuton üsulu (həmçinin Nyuton-Rafson üsulu) — riyazi analizdə İsaak Nyuton və Cozef Rafsonun adına adlandırılmış, real dəyərə malik funksiyaların köklərinin ardıcıl olaraq daha yaxşı həllini tapmaq üsulu. Bu, kökün tapılması alqoritmlərindən biridir. Nyuton üsulunun bir dəyişənlə tətbiqi aşağıdakı kimidir: Bu üsul x dəyişəni olan f funksiyası, həmin funksiyanın f ′ törəməsi və f funksiyasının kökü kimi ilkin x0 fərziyyəsi ilə başlayır. Əgər bu funksiya formulanın törəməsindəki fərziyyələri qane edirsə və ilkin fərz edilən həll yaxındırsa, o zaman x1 daha yaxşı təxmini həll tapmaq üçün x 1 = x 0 − f ( x 0 ) f ′ ( x 0 ) . {\displaystyle x_{1}=x_{0}-{\frac {f(x_{0})}{f'(x_{0})}}\,.} istifadə edilir. Həndəsi olaraq, (x1, 0), (x0, f (x0))-də f funksiyasının x oxu ilə kəsişməsidir Bu proses daha dəqiq həll tapılana kimi aşağıdakı kimi davam etdirilir: x n + 1 = x n − f ( x n ) f ′ ( x n ) {\displaystyle x_{n+1}=x_{n}-{\frac {f(x_{n})}{f'(x_{n})}}\,} İkinci tərtib törəmənin köməyi ilə minimumun axtarılması üsullarına iki tərtibli üsullar deyilir. Bu üsullarda funksiyanın Teylor sırasına ayrılışında kvadratik hissədən istifadə edilir. Nyuton üsulu da məhz ikinci tərtib üsullara, yəni minimallaşdırılan funksiyanın ikinci tərtib törəmələrindən istifadə edilən üsullara aiddir. Bu üsulda da məqsəd funksiyanın Teylor ayrılışının kvadratik hissəsindən istifadə etməkdir. Teylor ayrılışının kvadratik hissəsi funksiyanı bu ayrılışın xətti hissəsinə nisbətən daha dəqiq approksimasiya etdiyindən gözləmək olar ki, ikinci tərtib üsullar birinci tərtib üsullara nisbətən daha sürətlə yığılır.
Pomidor üsulu
Pomidor üsulu, 1990-ci illərin əvvəlində, Françesko Kirillo tərəfindən təklif olunan zamanın idarəolunması üsuludur. Bu üsul, tapşırığın, "pomidor" adlanan, qısa fasilərlə müşahidə olunan, 25 dəqiqəlik aralıqlara bolünməsini təklif edir. Hər intervalın və umümiyyətlə üsulun "pomidor" adlandırılması, Kirillonun tələbə olduğu vaxtlarda işlətdiyi pomidor formasında taymerin şərəfinə idi . Pomidor üsulü növbəti mərhələrdən ibarətdir: İcra edəcəyiniz tapşırığı müəyyən edin və alt tapşırıqlara bölün. Hər bir alt tapşırığa 25 dəqiqəlik ara (pomidor) ayrılır Taymeri 25 dəqiqəyə qoyun. Taymer zəng çalana qədər fikrinizi yayındırmadan işləyin. Fikrinizi yayındıran amilləri vərəqdə qeyd edin və işləməyə davam edin. Hər 25 dəqiqəlik ara sonlananda, pomidoru bitirdiyiniz haqqda qeyd aparın və qısa fasilə verin (3-5 dəqiqə), Hər 4-cü pomidordan sonra uzun fasilə verin (15-30 dəqiqə). Planlaşdırma, izləmə, qeyd etmə, emal etmə və görüntüləmə üsulun əsaslarını təşkil edir . Planlaşdırma mərhələsində tapşırıqlar, onları tapşırıq siyahısında qeyd etməklə prioritetləşdirilir.
Qauss üsulu
Qauss üsulu — Xətti tənliklər sistemini həll etmək üçün klassik üsul. Bəzən bu üsula əmsalları yoxetmə üsulu da adlanır. Tutaq ki, kvadrat xətti tənliklər sistemi verilmişdir { a 11 x 1 + a 12 x 2 + … + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + … + a 2 n x n = b 2 … … … … … a m 1 x 1 + a m 2 x 2 + … + a m n x n = b m , ( 1 ) {\displaystyle {\begin{cases}a_{11}x_{1}&+a_{12}x_{2}&+\dots &+a_{1n}x_{n}&=b_{1}\\a_{21}x_{1}&+a_{22}x_{2}&+\dots &+a_{2n}x_{n}&=b_{2}\\\dots &\dots &\dots &\dots &\dots \\a_{m1}x_{1}&+a_{m2}x_{2}&+\dots &+a_{mn}x_{n}&=b_{m}\end{cases}},(1)} Bu sistemin həlli üçün məchulun yox edilməsi və ya Qausus üsulunun mahiyyəti aşağıdakı kimidir. Tutaq ki, a 11 ≠ 0 {\displaystyle a_{11}\neq 0} . Onda sistemin birinci tənliyinin hər iki tərəfini a 21 a 11 {\displaystyle \ {\frac {a_{21}}{a_{11}}}} vuraraq alınan a 21 x 1 + a 12 a 21 a 11 x 2 + a 1 n a 21 a 11 x n = a 21 a 11 b 1 {\displaystyle a_{21}x_{1}+\ {\frac {a_{12}a_{21}}{a_{11}}}x_{2}+\ {\frac {a_{1n}a_{21}}{a_{11}}}x_{n}=\ {\frac {a_{21}}{a_{11}}}b_{1}} tənliyini sistemin ikinci tənliyindən tərəf-tərəfə çıxaq. Aldığımız tənlikdə x 1 {\displaystyle x_{1}} məchulu iştirak etmir. a 22 ′ x 2 + a 23 ′ x 3 + . . . + a 2 n ′ x n = b 2 ′ {\displaystyle a'_{22}x_{2}+a'_{23}x_{3}+...+a'_{2n}x_{n}=b'_{2}} Sonra sistemin birinci tənliyinin hər iki tərəfini a 21 a 11 {\displaystyle \ {\frac {a_{21}}{a_{11}}}} vuraraq alınan tənliyini sistemin üçüncü tənliyindən tərəf-tərəfə çıxaq.
Radiolokasiya üsulu
Radiolokasiya üsulu – atmosferdə yağıntıların və buludların, həmçinin təhlükəli atmosfer hadisələrinin yerlərinin, hərəkət istiqamətlərinin, intensivliyinin radiolokasiya üsulu ilə təyin edilməsinə əsaslanmışdır.
Test üsulu
Test üsulu ilk dəfə olaraq 1969-cu ildə ABŞ-də orta məktəb məzunlarının bilik səviyyəsinin monitorinq əsaslarla qiymətləndirilməsi məqsədilə tətbiq olunub. 1970-ci illərdə ABŞ-nin bu sahədəki təcrübəsindən Türkiyədə eksperiment kimi ali məktəbə tələbə qəbulu prosesinin təkmilləşdirilməsində istifadə edilib. Azərbaycanda Test üsulu ilk dəfə olaraq 1992-ci ildən ali məktəbə tələbə qəbulu prosesində sonradan isə orta ixtisas məktəblərinə qəbulda da tətbiq olunub. Buraxılış imtahanları təhsil pillələri üzrə (9 və 11-ci siniflər) testlər vasitəsilə mərkəzləşdirilmiş qaydada aparılır, nəticələri xüsusi prosedurlar və texniki vasitələr tətbiq edilməklə, Azərbaycan Respublikasının Təhsil Nazirliyində qiymətləndirilir, məzunlara şəhadətnamə və attestatların verilməsi təmin edilir. Azərbaycanda Test üsulunun tətbiqi ilk dəfə 1992-ci ilin May ayinin 28-də Azərbaycan Ana Torpaq Partiyasında bu təşəbbüs müzakire olunmuşdur. "AATP Azərbaycanda rüşvətsiz tələbə qəbulunu gerçəkləşdirmək üçün test üsulunun tətbiq olunmasını 28 may 1992-ci ildə müzakirə edərək bunu ən vacib problem sayaraq o zamankı parlament sədri İsa Yunisoğlu Qəmbər ilə məsləhətləşib təşəbbüs qaldıran ilk partiya olub." 1960-80-ci illerde 1992-ci ilədək ali və orta ixtisas məktəblərinə tələbə qəbulunun qanunsuz yollarla (hökumət təmsilçilərinin təzyiqilə, vəzifəli şəxslərin təsirilə və kütləvi rüşvətxorluqla) ədalətsiz keçirilməsi milli şüurumuzun inkişafına 20-ci esrdə ən çox ziyan vurmuş amillərdənir. Keçmiş Sovet İttifaqının ərazisində TEST ÜSULU ilə rüşvətsiz tələbə qəbulunun 1992-ci ildən indiyədək əsasən Azərbaycanda keçirilməsi yaxın gələcəkdə xalqımızın əsgi sovet cumhuriyyətlərindəki xalqlara nisətən rəqabət qabiliyyətinin daha da artacagına inam yaradır. Test Üsulunun 1992-ci ildən indiyədək 20 dəfə əsasən uğurlu Tətbiqi xalqımızın mədəni səviyyəsinin fəxr olunacaq bir göstəricisidir. 1992-ci ildə Müsavat başqanının sabiq I müavini, Müsavat Partiyasının üzvlərinlərindən biri Vurğun Əyyub Azərbaycan Tarixində Ən Böyük İslahatın ilk dəfə keçirilməsində fəal iştirak edib. 1992-93-cü illərdə Vurğun Əyyub TQDK-ya rəhbərlik edib.
Titrəmə (üsulu)
Titrəmə (en.dithering), (ru.дрожание) – boz rəngin çalarlarının (monoxrom displey və ya printerdə), yaxud tamamlayıcı rənglərin (rəngli displey və ya printerdə) dəyişilməsi illüziyasını yaratmaq üçün kompüter qrafikasında tətbiq olunan üsul. Bu üsul ona əsaslanır ki, görüntünün hissələrinə bu və ya başqa rəng naxışlarını əmələ gətirən nöqtələr qrupu kimi baxılır. Titrəmə üsulu ilə yaradılmış görüntülər yarımton (HALFTONE) görüntülərə və müəyyən dərəcədə puantilizm (POINTILLISM) texnikası ilə işlənmiş rəsmlərə çox yaxındır; titrəmə, insan gözünün, müxtəlif rəngli ləkələri qaralamaqla onların təsirini ortalaşdırmıq və onları qavranılan bir çalar və ya rənglə qatışdırmaq xassəsindən istifadə edir. Verilmiş sahənin daxilində olan qara və ağ nöqtələrin nisbətindən asılı olaraq ümumi effekt bu və ya başqa boz rəng çalarını verəcək. Analoji olaraq, ağ nöqtələrlə səpələnmiş qırmızı nöqtələr çəhrayı rəngin çalarlarının dəyişilməsi illüziyasını yaradacaq. Titrəmədən kompüter qrafikasında daha yüksək realizm vermək üçün və çözmə imkanı aşağı olduqda əyrilərin və diaqonal xətlərin girintili-çıxıntılı qıraqlarını hamarlamaq (ALIASING) üçün istifadə olunur. İsmayıl Calallı (Sadıqov), "İnformatika terminlərinin izahlı lüğəti", 2017, "Bakı" nəşriyyatı, 996 s.
Yakobi üsulu
Yakobi üsulu — rəqəmsal xətti cəbrdə diaqonal dominant xətti bərabərliklərin həllinin tapılması alqoritmi. Hər bir diaqonal element həll edilir və təxmini dəyər daxil edilir. Proses həllə yaxınlaşana kimi davam etdirilir. Bu üsula Karl Qustav Yakob Yakobinin adı verilib. Fərz edək ki, A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } n dərəcəli xətti bərabərliklərdir, burada: A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] , x = [ x 1 x 2 ⋮ x n ] , b = [ b 1 b 2 ⋮ b n ] . {\displaystyle A={\begin{bmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{n1}&a_{n2}&\cdots &a_{nn}\end{bmatrix}},\qquad \mathbf {x} ={\begin{bmatrix}x_{1}\\x_{2}\\\vdots \\x_{n}\end{bmatrix}},\qquad \mathbf {b} ={\begin{bmatrix}b_{1}\\b_{2}\\\vdots \\b_{n}\end{bmatrix}}.} Sonra A matrisi diaqonal D komponentinə və onun qalığı R matrisinə bölünür: A = D + R where D = [ a 11 0 ⋯ 0 0 a 22 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a n n ] and R = [ 0 a 12 ⋯ a 1 n a 21 0 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ 0 ] . {\displaystyle A=D+R\qquad {\text{where}}\qquad D={\begin{bmatrix}a_{11}&0&\cdots &0\\0&a_{22}&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &a_{nn}\end{bmatrix}}{\text{ and }}R={\begin{bmatrix}0&a_{12}&\cdots &a_{1n}\\a_{21}&0&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{n1}&a_{n2}&\cdots &0\end{bmatrix}}.} Bunun həlli təkrarlanmaqla belə tapılır x ( k + 1 ) = D − 1 ( b − R x ( k ) ) , {\displaystyle \mathbf {x} ^{(k+1)}=D^{-1}(\mathbf {b} -R\mathbf {x} ^{(k)}),} burada x ( k ) {\displaystyle \mathbf {x} ^{(k)}} , x {\displaystyle \mathbf {x} } -nin k dərəcəli approksimasiyası yaxud təkrarlanması və x ( k + 1 ) {\displaystyle \mathbf {x} ^{(k+1)}} , x {\displaystyle \mathbf {x} } -nin növbəti yaxud k + 1 dərəcəli təkrarlanmasıdır. Element əsaslı formula beləcə aşağıdakı kimidir: x i ( k + 1 ) = 1 a i i ( b i − ∑ j ≠ i a i j x j ( k ) ) , i = 1 , 2 , … , n . {\displaystyle x_{i}^{(k+1)}={\frac {1}{a_{ii}}}\left(b_{i}-\sum _{j\neq i}a_{ij}x_{j}^{(k)}\right),\quad i=1,2,\ldots ,n.} xi(k+1) hesablanması x(k)-də özündən başqa hər bir elementin olmasını tələb edir. Xətti bərabərlik sistemi A x = b {\displaystyle Ax=b} formasında və onun ilkin fərz edilən həlli x ( 0 ) {\displaystyle x^{(0)}} verilib A = [ 2 1 5 7 ] , b = [ 11 13 ] and x ( 0 ) = [ 1 1 ] .
İstehsal üsulu
İstehsal üsulu (alm. Produktionsweise‎) — Marksizmə görə, məhsuldar qüvvələrin və onların şərtləndirdiyi istehsalat münasibətlərinin vəhdəti. İçtimai istehsal üsulları, bir tərəfdən — müvafiq istehsalat texnoloqiyasının tarixi tipinə görə (məhsuldar qüvvələr), o biri tərəfdən — istehsal və bölgü əsnasındakı istehsal şəraitinə və vasitələrinə olan hakim münasibətlərin müvafiq iqtisadi gerçəkləşdirilməsi tipinə görə(istehsalat münasibətləri) fərqlənirlər. Hakim istehsal üsulu ictimai-iqtisadi formasiyanın özülü(bazisi) sayılır.
Prototiplərin sürətli hazırlanması
Prototiplərin sürətli hazırlanması (ingiliscə Rapid Prototyping) maketlərin, sınaq nümunələrinin və ya işlək modellərin konstruksiya verilənlərinin bazasında sürətli hazırlanma texnologiyasıdır. Bu prototiplər hazırlama prosesinin sonrakı mərhələsində dəqiqləşdirilir və beləliklə seriya istehsalım üçün yararlı hala gətirilirlər. 1987-ci ildə ilk dəfə olarag kompyüterden bir başa üçölçülü modellərin hazırlanması mümkün olmuşdur. Modellər istənilən həndəsi formaya malik ola bilirlər. Daxili boşlugları, arxa səthlərı və yuvaları problemsiz hazırlamag mümkün olmuşdur. İlk vaxtlarda bu üsulla hazırlanan modellərə sərf olunan vaxt adi üsulla, yəni mexaniki e`mal vasitəsi ilə hazırlananlardan bir neçə saat az idi. Bu modellər süni materialdan hazırlandığı üçün yalnız əyani nümayiş üçün və ya da dizayn modeli kimi istifadə edilirdi. Onların "funksional prototip" kimi istifadə edilməsi mexaniki və ya termiki yükləmə baxımından mümkün deyildi. Modellərin yeni üsulla hazırlanması qabaqlar tətbiq olunan xüsusu alətlərdən, formalardan və avadanlıqlardan imtina etməyə şərait yaratmışdır. Bu yeni üsulu ilk dəfə həyata keçirmək üçün hissənin üc ölçülü həndəsi forması haqqinda informasiyanı daşıyan bir kompüter proqramı və bu qrafiki informasiyanı qat şəklində addım və addım fotopolimerləşdirmə vasitəsilə qətrandan əyani cismə çevirən qurğu tətbiq edilmişdir.
Sürətli Furye çevirməsi
Sürətli Furye çevirməsi (ing. Fast Fourier Transform, rus. Быстрое преобразование Фурье) – diskret Furye çevirməsinin sürətli hesablanması alqoritmidir. SFÇ-nin əsasını diskret siqnalın verilmiş bölgülər ardıcıllığının bir neçə aralıq ardıcıllığa bölünməsi prinsipi təşkil edir. N bölgü üçün SFÇ-də təxminən sayda əməliyyat olur. Məsələn, 256 bölgü üçün əməliyyatların sayı 2048-dir (DFT-də 65536-dir). İmamverdiyev Y.N., Suxostat L.V. "Nitq texnologiyaları üzrə terminlərin izahlı lüğəti ", 2015,“İnformasiya Texnologiyaları” nəşriyyatı, 111 səh.
Sürətli nizamlama (Quicksort)
Sürətli nizamlama (ing. Quicksort) alqoritmi Tony Hoare tərəfindən 1959 -cu ildə hazırlanmış və 1961 -ci ildə nəşr olunmuş, nizamlama alqoritmidir. Sürətli nizamlama alqoritmi rekursiv alqoritmdir, parçala və idarə etmə alqoritminə əsaslanır. Sürətli nizamlama alqoritminin riyazi analizləri göstərir ki, alqoritm n elementi nizamlamaq üçün ortalama O(n log n) müqayisə əməliyyatı yerinə yetirir. Ən pis halda isə O(n2) əməliyyat yerinə yetirir. Sürətli nizamlama alqoritmi parçala və idarə etmə alqoritmidir. Sürətli nizamlama əvvəlcə massivi iki kiçik massivə bölür: kiçik elementlər massivi və böyük elementlər massivi. Sonra rekursiv olaraq bu massivləri sıralayır. Massiv boş olduqda və bir elementdən ibarət olduqda onu nizamlamağa ehtiyac olmur. Bu iki hal sürətli nizamlama alqoritmində əsas hal (base case) adlandırılır.
Sürətli sıralama (Quicksort)
Sürətli nizamlama (ing. Quicksort) alqoritmi Tony Hoare tərəfindən 1959 -cu ildə hazırlanmış və 1961 -ci ildə nəşr olunmuş, nizamlama alqoritmidir. Sürətli nizamlama alqoritmi rekursiv alqoritmdir, parçala və idarə etmə alqoritminə əsaslanır. Sürətli nizamlama alqoritminin riyazi analizləri göstərir ki, alqoritm n elementi nizamlamaq üçün ortalama O(n log n) müqayisə əməliyyatı yerinə yetirir. Ən pis halda isə O(n2) əməliyyat yerinə yetirir. Sürətli nizamlama alqoritmi parçala və idarə etmə alqoritmidir. Sürətli nizamlama əvvəlcə massivi iki kiçik massivə bölür: kiçik elementlər massivi və böyük elementlər massivi. Sonra rekursiv olaraq bu massivləri sıralayır. Massiv boş olduqda və bir elementdən ibarət olduqda onu nizamlamağa ehtiyac olmur. Bu iki hal sürətli nizamlama alqoritmində əsas hal (base case) adlandırılır.
Ufa sürətli tramvayı
Ufa sürətli tramvayı — Başqırdısta Respublikasının Uda şəhərində planlaşdırılan sürətli tramvay xətti. Surətli tramvay xətti Ufa metropoliteninin əvəzinə olaraq istifadəyə vriləcəkdir. Hazırdas layihənin ekspertizası aparılır.. Bu layihənin hazırlanmasına zərurət sərnişin daşımada yaranan sıxlıq olmuşdur. Sürətli tramvay metropolitenə əvəz olaraq planlaşdırılır. Belə ki metropolitenə nisbətdə daha az vəsait sərf olunması və sürətin metro ilə eyni olması buna rəvac olmuşdur. Bu layihə həmdə şəhərin hər iki hissəsində yerləşən tramvay xətlərini birləşdirməyə imkan verməlidir. Sürətli tramvay iki xətdən ibarət olmalıdır. Şəhərin əsas magistralına paralel — Oktyabr prospekti — prospetin şərq və qərb küçələri ilə hərəkət edəcəkdir. Xətt Ufa tramvayının digər hissələri ilə birləşdiriləcəkdir.
Yüksək sürətli frezləmə
Yüksək sürətli frezləmə (ingiliscə High Speed Milling (HSC)) metalların emalında CNC idarə olunan dəzgahlarda yerinə yetirilən kəsmə üsulu olub alətin yüksək dövrlər sayında və bir neçə dəfə böyüdülmüş verişlərdə aparılması ilə səciyyələnir. Burada yonqar qatı adi kəsmə üsullarında olduğundan dəfələrlə kiçikdir. Son illərdə maşınqayırma texnologiyasında High Speed Cutting (HSC) kimi tanınan bu emal növü kağız üzərində mövcud olan nəzəriyyədən praktikada geniş tətbiq olunan bir texnologiyaya çevrilmişdir. Hələ keçən əsrin əvvəlində, 1929-ci ildə alman alimi Salomon tərəfindən Berlin Texniki Universitetində ixtira edilmiş bu texnologiya uzun müddət bir nəzəriyyə kimi qalmışdır. Laboratoriya şəraitində aparılmış sınaqlar nəticəsində Salomon o dövrdə Teylorun kəsmə sürəti ilə alətin davamlılığı arasında mövcud olan asılılığını təkzib edən başqa bir nəticəyə gəlmişdir. Teylor nəzəriyyəsinə görə mexaniki emal zamanı kəsmə sürəti artdiqca kəsmə zamanı yaranan temperatur və qüvvə də artır. Bunun nəticəsində alətin davamlılığı aşağı düşür. Salomonun sınaqları isə başqa bir nəticə vermişdir, yəni kəsmə sürəti artdiqca kəsmə zamanı yaranan temperatur yalnız bir müddət artır, və sürətin sonrakı artımı onun azalmasına səbəb olur. Bununla Teylor nəzəriyyəsinin yalnız kiçik bir intervalda düzgün olduğu göstərildi. Salomon öz sınaqlarını müxtəlif metallar üzərində aparmışdır: polad-440 m/dəq, brünc-1600 m/dəq, mis-2850 m/dəq və alüminium-16500 m/dəq.
Çində sürətli qatar
Çində sürətli dəmiryolu (High-speed rail) — sərnişin daşınması üçün istifadə olunan və 250–350 km/saat sürət üçün qurulan dəmiryolu xəttləridir. 2017-ci ildə ölkənin 29 regionundan 33 regionuna genişləndirilmiş və xəttlərin uzunluğu 25 000 km-ə çatdırılmışdır. Bu bütün dünyadakı sürətli dəmiryolu xəttlərinin üçdə ikisini təşkil edir. Bu dünyanın ən uzun sürətli dəmiryolu xəttidir və həmçinin dünyada ən çox istifadə olunan xəttdir. Belə ki, bu xəttlə 2017-ci ildə 1,713 milyard gediş baş tutmuş, ümumi gediş sayı 7 milyarda çatmışdır. Sürətli dəmiryolu xətti Çin Dəmiryolu Korporasiyası tərəfindən idarə olunur. Çin sürətli dəmiryolu xətti 2007-ci ilin aprel ayında istifadəyə verilmiş və dəmiryollarının 250 km/saat gedə bilməsi üçün reyslər düzəldişmişdir. Pekin-Tianjin xətti Avqust 2008-ci ildə açılmış və 350 km/saat sürətlə hərəkətə imkan verən ilk sərnişin dəmiryolu xətti olmuşdur. Son 15 ildə dəmiryolu Çin hökümətinin qoyduğu investiyalar sayəsində sürətlə inkişaf etmişdir. Dəmiryolu naziri Liu Zhijunun 2011-ci ildə korrupsiyaya görə istefaya göndərilməsi, dəmiryollarının maddi dayanıqlığı, təhlükəsizliyi, qiyməti və ətraf mühitə təsiri qayğılarına səbəb olmuşdur.