şüa enerjisi

ру лучистая энергия en radiant energy de Strahlungsmenge fr énergie rayonnante es energía radiante it energia irradiante
Şottki baryerli element
şüa selinin sıxlığı
OBASTAN VİKİ
Şüa (həndəsə)
Şüa — düz xəttin üzərindəki hər hansı bir nöqtədən eyni tərəfdə yerləşən (həmin nöqtə də daxil olmaqla) nöqtələr çoxluğudur. Bir tərəfdən məhdud olan düz xəttt hissəsinə şüa və ya yarım düz xətt deyilir. Bir düz xətt üzərində olan ortaq başlanğıclı iki yarım düz xəttə tamamlayıcı yarım düz xətt və ya şüa deyilir. Şüanın mərkəzi simmetriyası yoxdur.
Şüa (texnika)
Dirək — şüa binalardakı döşəmə və istifadə sahəsi yüklərini şaquli daşıyıcılara (sütunlara) köçürən və mexaniki olaraq çubuq kimi qəbul edilən bir tikinti elementi. Dəmir-beton konstruksiyalarda döşəmə yüklərinin əvvəlcə dirəklərə köçürülməsi və kəsmə qüvvəsi ilə moment effektləri daşıyan dirəklərin bu qüvvələri sütunlara ötürməsi qəbul edilir. Sütundan sütuna dirəklərin uzunluqlarına dirək aralığı deyilir. Dirək aralığı artdıqca dirək hissəsinin hündürlüyü artırılmalıdır. Dirəyin şaquli deformasiyaları (əyilməsi) nəzarət altında saxlanılmalıdır. Əks təqdirdə, binanın rahatlığı azalacaqdır. Döşəmələrdən və digər dirəklərdən aldığı yükləri dirəyə və ya daşıyıcı sistemə ötürən elementlərə dəmir-beton dirəklər deyilir. Sadə dirəklər: Bunlar hörgü konstruksiyalarındakı dayaqlara iki ucu sərbəst şəkildə daxil olan dirəklərdir. Bu cür dirəklər dayaqlarda ən az 20 sm oturmalıdır. Konsol dirəklər: Bunlar bir ucu basdırılmış (yerləşdirilmiş), digər ucu dayaqlanmış (asılmış) olan dəmir-beton dirəklərdir.
Şüa Hüseynov
Şüa Hüseynov (tam adı: Hüseynov Şüa Hüseyn oğlu; 27 fevral 1939, Kirovabad) — 1967-1995-ci ilə qədər Respublika Ağır atletika Federasiyasının prezidenti, Azərbaycan Respublikasının "əməkdar müəllimi", Beynəlxalq dərəcəli hakim. Hüseynov Şüa Hüseyn oğlu 1939-cu il fevralın 27-də Gəncə şəhərində anadan olmuşdur. O, 1952-ci ildə 15 saylı orta məktəbi bitirdikdən sonra Gəncə İnşaat Texnikumuna daxil olmuş, 1956-cı ildə həmin texnikumu bitirmiş, 1958-ci ildə Azərbaycan Dövlət Bədən Tərbiyəsi İnstiutuna daxil olub, 1962-ci ildə institutu bitirmiş, həmin ili Azərbaycan Dövlət Universitetinin Biologiya fakültəsinə daxil olmuş, 1967-ci ildə universiteti müvəffəqiyyətlə bitirmişdir. 1961-ci ildən Ali məktəbdə işləyir. 1967-ci ildə Azərbaycan DBTİ-da müəllim, baş müəllim 1969-ci ildə, elmlər namizdə 1974-ci ildə dosent (1980), 1994-cü ildən professor adına layiq görülmüşdür. 1978-2015-ci illərə kimi “Ağır atletika və boks” kafedrasının müdiri vəzifəsində çalışmışdır. 50-dən çox elmi əsərin müəllifidir. Bu əsərlərdən 80 çap vərəqi həcmində tədris və tədris-metodiki vəsaitdir ki, idman mütəxəssisləri respublikamızda bu əsərlərldən səmərəli istifadə edirlər. İdman sahəsində bir mütəxəssis kimi 1955ci ildən fəaliyyət göstərməyə başlayıb. 1969-ci ilə qədər müxtəlif idman cəmiyyətlərində baş məşqçi işləyib və 15 nəfərdən artıq idman ustası hazırlamışdır.
Şüa izləmə
Şüa izləmə (ing. ray tracing) — görüntünün renderinq (RENDERİNG) olunmasının iki əsas üsulundan biri. Kompüter qrafikasında: görüntünün hər bir obyektinin parlaqlığının, şəffaflıq səviyyəsinin və əksetdirmə imkanının hesablanması üçün istifadə olunan alqoritm. Bu atributlar müəyyən işıq mənbəyindən hər bir elementə və sonra müşahidəçinin gözünədək olan yolda ayrı-ayrı əks olunmuş işıq şüalarındakı dəyişikliklərin izlənməsi yoluyla hesablanır. Bundan sonra obyektin atributlarından ekranda görüntünü əmələ gətirən piksellərin rəngini və intensivliyini ölçmək üçün istifadə olunur. Şüa izləmə hər bir pikselin atributlarını müşahidəçiyə, gürününün elementlərinə və işıq mənbəyinə nəzərən hesablamağa imkan verir. İsmayıl Calallı (Sadıqov), "İnformatika terminlərinin izahlı lüğəti", 2017, "Bakı" nəşriyyatı, 996 s.
Dəmir şüa
Dəmir şüa (ivr. ‏קֶרֶן בַּרְזֶל‏‎, keren barzel, ing. Iron beam) — İsrailin müdafiə podratçısı olan Rafael inkişaf etmiş müdafiə sistemləri tərəfindən 17 avqust 2020-ci ildə dünyaya nümayiş etdirilmiş hava hücumundan müdafiə sistemidir. Sistem ilk dəfə 11 fevral 2014-cü ildə Singapur Air Show sərgisində nümayiş etdirilmişdir. Dəmir şüa Dəmir Qübbə hava hücumundan müdafiə sisteminin effektiv bir formada qarşısını almaqda çətinlik çəkdiyi mənzili çox kiçik olan, yəni 7 kilometrə qədər olan qısa mənzilli raketləri, artilleriya mərmilərini və Hava toplarını məhv etmək üçün nəzərdə tutulmuşdur. Bundan əlavə, sistem pilotsuz uçuş aparatlarını da məhv edə bilir. Sistem mənzili 7 kilometrə qədər olan düşmən hədəflərini məhv etmək üçün “yönləndirilmiş yüksək enerjili lazer şüasından” istifadə edəcəkdir. Dəmir şüa Arrow 2, Arrow 3, Davud sapandı və Dəmir Qübbə ilə yanaşı, İsrailin inteqrasiya olunmuş hava hücumundan müdafiə sisteminin beşinci elementini təşkil edəcəkdir. Bununla belə, Dəmir şüa həm də müstəqil bir hava hücumundan müdafiə sistemidir. Dəmir şüa, atışdan sonrakı 4-5 saniyə ərzində havadakı hədəfi məhv etmək üçün fiber lazerdən istifadə edir.
Aktivləşmə enerjisi
Aktivləşmə enerjisi — kimyəvi reaksiya zamanı toqquşan molekulların malik olduqları enerjiyə deyilir. Əksər kimyəvi reaksiyaların sürəti temperatur artdıqca artır. XIX əsrin 80-ci illlərin əvvəlində Hollandiya fiziki və kimyaçısı Yakob Vant-Hoff göstərdi ki, əksər kimyəvi reaksiyaların sürəti hər 10 °C qaldırdıqda 2–4 dəfə artır. 1889-cu ildə İsveç alimi Svante Arrenius bir çox kimyaçıların o zaman aldığı nəticələri ümumiləşdirərək reaksiyanın sürət sabitinin temperaturdan asılılığını təklif etdi: k = A e − E a / R T {\displaystyle k=Ae^{{-E_{a}}/{RT}}} Burada K — sürət sabiti; A – hər bir reaksiya üçün xarakterik olan sabit əmsal; R — universial qaz sabiti; T – mütləq şkalada temperatur (mütləq temperatur); E4- Arrenius tərəfindən aktivləşmə enerjisi adlandırılan və hər bir reaksiya üçün xarakterik olan enerjidir. Arrenius fərz edirdi ki, toqquşma zamanı bütün molekullar reaksiyaya girmir, yalnız verilmiş temperaturda lazımi miqdarda enerjiyə malik molekullar reaksiyaya girir. Bu enerji aktivləşmə enerjisi adlanır və C/mol ilə ölçülür. Temperatur nə qədər yüksək olarsa, bir o qədər çox molekul bu enerjiyə malik olur və reaksiyaya girmək qabiliyyəti müvafiq olaraq yüksək olur. Ea-nın qiyməti nə qədər az olarsa, verilmiş temperaturda bir o qədər çox molekul reaksiyaya girir, Ea=0 olduqda hər bir toqquşma reaksiyaya səbəb olur; bu halda reaksiyanın sürəti vahid həcmdə vahid zamanda toqquşmaların sayına bərabərdir.
Dalğa enerjisi
Dalğa enerjisi - okeanın səthində dalğaların yarardığı enerji. Elektrik enerjisi istehsal etmək, okean suyunu duzsuzlaşdırmaq və suyun çənlərə vurulması kimi faydalı işləri yerinə yetirə bilər. Dalğa enerjisi tükənməz enerji mənbəyidir. Əslində dalğa enerjisi də, günəş enerjisinin bir başqa şəklidir. Bu bəlkə qulağa qəribə gələ bilər ancaq; dalğa, günəşin dünyanı istilətməsiylə ortaya çıxan küləklər tərəfindən başladılar. Günəş dünyanın hər nöqtəsini eyni dərəcədə qızdırmır. Dünyanın həndəsi quruluşu səbəbiylə bəzi bölgələr istiliyi daha yaxşı bir bucaqla götürər və digər yerlərdən çox istilənər. Havanın bir hissəsinin istiliyi daha da artar, istiləndikcə sıxlığı azalar, yüngülləşər və yuxarı çıxar. İstilənən havanın tərk edib boşaltdığı yerə daha sıx və soyuq olan hava çökər. Bu hava axını küləyi meydana gətirər.
Gibbs enerjisi
Gibbs sərbəst enerjisi (və ya sadəcə Gibbs enerjisi, ya da Gibbs potensialı və ya dar mənada termodinamik potensial) kimyəvi reaksiya zamanı dəyişiklik sistemin daxili enerjisinin dəyişməsinə bərabər olan bir miqdardır. Gibbs enerjisi, sistemin ümumi daxili enerjisinin kimyəvi çevrilmələr üçün istifadə edilə biləcəyini və ya verilən şərtlər nəticəsində əldə edildiyini göstərir və bizə verilən şərtlərdə kimyəvi reaksiyanın əsas ehtimalını yaratmağa imkan verir. Riyazi olaraq, bu aşağıdakı formanın termodinamik potensialıdır: G = U + P V − T S {\displaystyle G=U+PV-TS} Gibbs enerjisi sistemin ümumi potensial kimyəvi enerjisi (kristal, maye və s.) olaraq başa düşülə bilər. Gibbs enerjisi anlayışı termodinamika və kimya sahələrində geniş istifadə olunur. İzobarik-izotermal prosesin kortəbii gedişi iki amil ilə müəyyən edilir: sistemin entalpiyasının azalması ilə əlaqəli entalpiya ( Δ H {\displaystyle \Delta H} ) və entropiyasının T Δ S {\displaystyle T\Delta S} artması səbəbiylə sistemdəki pozğunluğun artması səbəbiylə. Bu termodinamik amillər arasındakı fərq, izobarik-izotermal potensial və ya Gibbs sərbəst enerji adlanan sistemin vəziyyətidir( G {\displaystyle G} , kC) Gibbs enerjisinin klassik tərifi: G = U + P V − T S , {\displaystyle G=U+PV-TS,} U {\displaystyle U} — daxili enerjini, P {\displaystyle P} — orta təzyiqi, V {\displaystyle V} — həcmi, T {\displaystyle T} — mütləq temperaturu, S {\displaystyle S} — Termodinamik entropiyanı ifadə edir. Daimi sayda hissəcikləri olan, öz dəyişənləri ilə ifadə olunan sistem üçün Gibbs enerji diferensialı P {\displaystyle P} təzyiqi və T {\displaystyle T} temperaturundan keçir: d G = − S d T + V d P . {\displaystyle dG=-S\,dT+V\,dP.} Dəyişən sayda hissəcik olan bir sistem üçün bu diferensial aşağıdakı kimi yazılır: d G = − S d T + V d P + μ d N . {\displaystyle dG=-S\,dT+V\,dP+\mu \,dN.} Burada μ {\displaystyle \mu } — sistemə başqa bir hissəcik əlavə etmək üçün xərclənməli olan enerji olaraq təyin edilə bilən kimyəvi potensialdır. Minimum Gibbs potensialının sabit bir temperatur, təzyiq və hissəciklərin sayı olan bir termodinamik sistemin sabit tarazlığına uyğun olduğunu göstəririk.
Günəş enerjisi
Günəş enerjisi — günəş işığından enerji əldə edilməsi texnologiyası. Yer səthinə düşən Günəş enerjisinin miqdarı bütün neft, təbii qaz, daş kömür və digər yanacaq ehtiyatlarından çoxdur. Onun 0,0125%-nın istifadə olunması ilə bugünkü dünya energetikasının bütün ehtiyaclarını təmin etmək olardı. Günəş enerjisinin istifadəsinin üstünlüyü ondadır ki, günəş qurğuları işləyən zaman parnik effekti yaranmır, havanın çirklənməsi baş vermir, istilik aşağı atmosfer qatlarına yayılmır. Günəş enerjisinin yalnız bir çatışmazlığı var – o da atmosferin vəziyyətindən, günün və ilin vaxtından asılılıqdır. Günəş enerjisini iki üsul ilə işlətmək olar: müxtəlif termik sistemlərin köməyi ilə, istilik enerjisi şəklində, foto-kimyəvi və fotoelektrik proseslərin çevrilməsi üzrə qurğularda. Günəş enerjisini elektrik enerjisinə çevirmək üçün müxtəlif növ kollektorlardan istifadə olunur. Yüksək temperatur yaradan kollektorlarda günəş işığını əks etdirən, toplayan və günəşin istiqaməti üzrə hərəkət edən parabolik güzgülərdən istifadə olunur. Bu kollektor sisteminə xüsusi maye üçün nəzərdə tutulan istilik dəyişmə sistemi də daxildir. Səmərəliliyinə görə günəş kollektorlarından istifadə mərkəzləşdirilmiş enerji sistemlərindən uzaq olan ərazilərdə özünü doğruldur.
Hidrogen enerjisi
Hidrogen iqtisadiyyatı, Hidrogen enerjisi - önümedilməkdədir. Bu enerji, sudan əldə edilə bilməkdə və yüksək məhsuldarlıqla, ətraf üzərində heç bir mənfi təsir yaratmadan faydalı bir enerjiyə çevrilə bilməkdədir. Dünyanın enerji problemini həll etmək üçün istifadə ediləcək hidrogen enerjisi ilə milyardlarla il çatacaq enerji davamlı olaraq çıxarıla biləcək. Yaponiyanın “JR Higashi Nihon” dəmir yolu şirkəti 2020-ci ilin ortalarından başalayaraq ekoloji cəhətdən təmiz, hidrogen yanacağı elementindən istifadə edən qatarlardan istifadəni planlaşdırır. Şirkət hidrogen yığılan çənlərin vaqonların damında və döşəmənin altında yerləşdirilməsini nəzərdə tutan layihə üzərində işləyir. Həmin qatarlarda elektrik enerjisi çənlərdəki hidrogenin atmosferdəki oksigenlə kimyəvi reaksiyası zamanı əldə ediləcək. Hesablamalara görə, qatarlardakı bütün çənlər dolu olduğu halda onun təqribən 140 kilometr məsafəni qət etməsi mümkündür.
Külək enerjisi
Külək enerjisi — küləyi meydana gətirən hava axınının sahib olduğu hərəkət (kinetik) enerjisidir. Alternativ enerji (bərpa olunan) mənbələrindən biri hesab olunur. Bu enerjinin bir hissəsi faydalı olan mexaniki və ya elektrik enerjisinə çevrilə bilər. Külək enerjisi digər alternativ enerji mənbələri olan günəş, hidroenergetika, geotermal və biokütlə enerjisindən özünün maya dəyərinə, ekoloji təmizliyinə və tükənməzliyinə görə ən sərfəlisidir. Küləyin gücündən çox köhnə illərdən bəri faydalanırlar . Külək gücündən ilk faydalanma şəkli olaraq yelkənli gəmilər və yel dəyirmanları göstərilə bilər. Daha sonra taxıl üyüdmə, su nasosla vurma, ağac kəsmə işləri üçün də külək gücündən faydalanılmışdır. İndiki vaxtda daha çox elektrik çıxarmaq məqsədiylə istifadə edilməkdədir. Elektrik enerjisi istehsalı üçün daha səmərəli texnologiyalardan biridir. Külək qurğularının inşasına ənənəvi elektrik stansiyalarının qurulmasına nisbətən daha az vaxt sərf olunur.
Nüvə enerjisi
Nüvə enerjisi — nüvə parçalanması və ya birləşməsi ilə müşayət olunan nüvə reaksiyası zamanı yaranan enerji. Sənayedə elektrik enerjisinin əldə edilməsi üçün tətbiq olunan texnologiyaya da nüvə enerjisi deyilir. Nüvə birləşməsinin praktiki tətbiqi hələ tədqiqat mərhələsində olsa da, nüvə parçalanması artıq 1950-ci illərdə uranın tətbiqi ilə sınaqdan keçirilmiş və geniş tətbiq olunmuşdur. Nüvə enerjisi adətən uran 235 və ya plutoniumun tətbqiqi ilə zəncirvari reaskiya nəticəsində əldə edilir. Nüvəyə neytronlar düşdükdə o parçalanaraq yeni neytronlar və qalıqlar alınır. Alınan bu hissəciklər yüksək kinetik enerjiyə malik olurlar. Qalıqların başqa atomlarla toqquşması zamanı bu kinetik enerji istiliyə çevrilir. Nüvə partlamasına ilk dəfə 1934-cü ildə Enriko Fermi təcrübə yolu ilə nail olub. İlk dəfə 1951-ci il dekabrın 20-də nüvə reaktorundan elektrik enerjisi əldə olunub. Prezident Dvayt Eyzenhaver 1953-cü ilin dekabrında “Atomlar Sülh üçün” çıxışında atomun faydalı istifadəsini vurğulamış və ABŞ-nin nüvə enerjisinin beynəlxalq istifadəsini dəstəkləyən güclü dövlətlər sırasında olduğunu bildirmişdi.
İstilik enerjisi
İstilik enerjisi (İE) - kömür, odun, neft, təbii qaz kimi yanacaqların yandırılmasıyla istilik enerjisi ortaya çıxmaqdadır. Əldə edilən istilik enerjisi əvvəlcə turbinlər köməyiylə mexaniki enerjiyə, daha sonra da generatorlar köməyiylə elektrik enerjisinə çevrilmək xüsusiyyəti vardır. İnsanlar gündəlik həyatlarında evlərdə, qışda istilənmək zamanı, mətbəxdə və ya yemək bişirmək üçün istilik enerjisindən tez-tez istifadə edirlər.
Elektrik enerjisi
Elektroenerji (və ya elektrik enerjisi) — generatortərəfindən elektrik şəbəkəsinə verilən və ya istehlakçı tərəfindən şəbəkədən alınan elektrik enerjisinin miqdarını təyin etmək üçün texnologiyada və gündəlik həyatda geniş istifadə olunan fiziki termin. Elektrik enerjisinin istehsalı və istehlakı üçün əsas ölçü vahidi kilovat-saatdır (və onun vahidl'ri). Daha dəqiq təsvir üçün, gərginlik, tezlik və fazaların sayı (dəyişən cərəyan üçün), nominal və maksimum elektrik cərəyanı kimi parametrlər istifadə olunur. Dünyanın ən böyük elektrik enerjisi istehsal edən ölkələri dünya istehsalının müvafiq olaraq 24%-ni və 18%-ni istehsal edən Çin və ABŞ-dır. 2012-ci ildən Çin illik elektrik enerjisi istehsalı (2016-cı ildə 6,14 trilyon kVt/saat) üzrə lider mövqe tutmuşdur . 2017-ci ildə qlobal elektrik enerjisi bazarı 5,61 milyard ABŞ dolları dəyərində qiymətləndirilib . Elektrik enerjisi alqı-satqısının həcminin demək olar ki, 9/10-u Avropa ölkələrinin payına düşür. Ən böyük ixracatçılar Fransa (1,75 milyard dollar), Almaniya (731 milyon dollar), Hollandiya (410 milyon dollar), İspaniya (358 milyon dollar), Bosniya və Herseqovina (294 milyon dollar)dır. Ən böyük idxalçılar İtaliya (2,21 milyard dollar), Böyük Britaniya (1,07 milyard dollar), Mərakeş (360 milyon dollar), Yunanıstandır (328 milyon dollar).
Gün enerjisi
Günəş enerjisi — günəş işığından enerji əldə edilməsi texnologiyası. Yer səthinə düşən Günəş enerjisinin miqdarı bütün neft, təbii qaz, daş kömür və digər yanacaq ehtiyatlarından çoxdur. Onun 0,0125%-nın istifadə olunması ilə bugünkü dünya energetikasının bütün ehtiyaclarını təmin etmək olardı. Günəş enerjisinin istifadəsinin üstünlüyü ondadır ki, günəş qurğuları işləyən zaman parnik effekti yaranmır, havanın çirklənməsi baş vermir, istilik aşağı atmosfer qatlarına yayılmır. Günəş enerjisinin yalnız bir çatışmazlığı var – o da atmosferin vəziyyətindən, günün və ilin vaxtından asılılıqdır. Günəş enerjisini iki üsul ilə işlətmək olar: müxtəlif termik sistemlərin köməyi ilə, istilik enerjisi şəklində, foto-kimyəvi və fotoelektrik proseslərin çevrilməsi üzrə qurğularda. Günəş enerjisini elektrik enerjisinə çevirmək üçün müxtəlif növ kollektorlardan istifadə olunur. Yüksək temperatur yaradan kollektorlarda günəş işığını əks etdirən, toplayan və günəşin istiqaməti üzrə hərəkət edən parabolik güzgülərdən istifadə olunur. Bu kollektor sisteminə xüsusi maye üçün nəzərdə tutulan istilik dəyişmə sistemi də daxildir. Səmərəliliyinə görə günəş kollektorlarından istifadə mərkəzləşdirilmiş enerji sistemlərindən uzaq olan ərazilərdə özünü doğruldur.
Elektron-şüa borusu
Elektron-şüa borusu (CRT - cathode-ray tube)– televiziya monitorunun və mikrokompüterin standart displeyinin əsas elementi. Belə displey, içərisində elektron şüalar buraxan bir və ya bir neçə elektron top (GUN) olan vakuum borusunun əsasında qurulur; bu şüalar borucuğun qabaq divarının şüalanma zamanı işıqlanan daxili örtüyünə tuşlanır. Monoxrom elektron-şüa borusunda bir elektron top və bir qayda olaraq, ağ, yaşıl və ya sarı rənglər verən bir lüminofor gərəkli olur. Rəngli borucuq üçün isə üç elektron top lazımdır: nadir elementlərlə zənginləşdirilmiş və qırmızı, yaşıl və göy rənglər (qeyri-şəffaf boyalar deyil, işıq gücünün müxtəlif səviyyələri qatışdırıldığından, əsas rənglər olaraq, qırmızı-sarı-göy deyil, qırmızı-yaşıl-göy götürülür) verən üç tip lüminiforun hər birini şüalandırmaq üçün bir ədəd. Hər bir şüa, bir dəfəyə bir üfüqi darama sətri yaratmaqla əvvəlcə soldan sağa, sonra isə yuxarıdan aşağıya hərəkət edir. Şüa elektron-şüa borusunun boğazında yerləşən elektromaqnitlər sistemi vasitəsilə əyilir və borucuğun qabaq divarında olan lüminoforun piksellərini şüalandırmaqla görüntünü çəkir. Titrəməni olmaması üçün elektron şüa ekran görüntüsünü saniyədə 30 və ya daha artıq dəfə təzələyir. Görüntünün aydınlığı (dəqiqliyi) ekrandakı piksellərin sayından asılı olur. İsmayıl Calallı (Sadıqov), “İnformatika terminlərinin izahlı lüğəti”, 2017, “Bakı” nəşriyyatı, 996 s.
Azərbaycanda atom enerjisi
Azərbaycanda nüvə energetikası — Azərbaycan Respublikasında hal-hazırda mövcud olmayan, ancaq inkişaf üçün uzaq gələcəkdə planlaşdırılan sahə. Azərbaycanda nüvə energetikasından elektrik enerjisinin alınması məqsədilə istifadə ideyası XX əsrin 70-ci illərin ortalarına aiddir. 1980-ci ildə isə Bakıdan 90 km cənub-şərqdə yerləşən Nəvai yaşayış məntəqəsi yaxınlığında layihə gücü, təxminən, 1000 MVt olan AES tikintisinin təməlinin qoyulması həyata keçirilib. Yerin seçilməsi müxtəlif faktorlardan irəli gəlmişdir. Belə ki, bu regionunun sənaye potensialının genişləndirilməsi planları və sovet alimlərinin hesablamalarına görə seysmik cəhətdən əlverişli zona olmasından irəli gəlmişdir. Ancaq bu layihənin reallaşdırılması bir qədər ləngimiş və Çernobıl faciəsindən sonra isə tamamən imtina edilmişdir. Azərbaycanda atom enerjisindən istifadə məqsədilə 8 may 2014-cü ildə Azərbaycan Respublikasının Rabitə və Yüksək Texnologiyalar Nazirliyinin tabeliyində "Milli Nüvə Tədqiqatları Mərkəzi" Qapalı Səhmdar Cəmiyyəti yaradılmışdır. Mərkəzin təşkilində əsas məqsəd atomdan elektrik enerjisinin alınması deyil həm də, onun sənaye, kənd təsərrüfatı, səhiyyə və s tətbiqinə nail olmaq olur. Azərbaycan 2002-ci ildə Atom Enerjisi üzrə Beynəlxalq Agentliyə üzv qəbul edilir. Azərbaycanda tədqiqat nüvə reaktorunun tikintisinə dair müraciət isə 2007-ci ildə Atom Enerjisi üzrə Beynəlxalq Agentlik (MAQATE) tərəfindən qəbul edilib.
Hidrogen yanacağı enerjisi
Hidrogen iqtisadiyyatı, Hidrogen enerjisi - önümedilməkdədir. Bu enerji, sudan əldə edilə bilməkdə və yüksək məhsuldarlıqla, ətraf üzərində heç bir mənfi təsir yaratmadan faydalı bir enerjiyə çevrilə bilməkdədir. Dünyanın enerji problemini həll etmək üçün istifadə ediləcək hidrogen enerjisi ilə milyardlarla il çatacaq enerji davamlı olaraq çıxarıla biləcək. Yaponiyanın “JR Higashi Nihon” dəmir yolu şirkəti 2020-ci ilin ortalarından başalayaraq ekoloji cəhətdən təmiz, hidrogen yanacağı elementindən istifadə edən qatarlardan istifadəni planlaşdırır. Şirkət hidrogen yığılan çənlərin vaqonların damında və döşəmənin altında yerləşdirilməsini nəzərdə tutan layihə üzərində işləyir. Həmin qatarlarda elektrik enerjisi çənlərdəki hidrogenin atmosferdəki oksigenlə kimyəvi reaksiyası zamanı əldə ediləcək. Hesablamalara görə, qatarlardakı bütün çənlər dolu olduğu halda onun təqribən 140 kilometr məsafəni qət etməsi mümkündür.
Türkiyədə atom enerjisi
Türkiyədə nüvə energetikası - hal-hazırda mövcud olmayan, ancaq inkişaf üçün planlaşdırılan sahə. Türkiyə Respublikasında nüvə sənayesinin inkişafı xronologiyası: 1955 — ABŞ-la Atom enerjisindən sülh məqsədi ilə istifadə anlaşmasının imzalanması. 1956 — Atom enerjisi Komisiyyasının işə başlaması. 1965 — Atom elektrik stansiyasının tikinti məsələləri ilə bağlı tədqiqatlara başlanılması. 1972 — Türkiyə Atom Enerjisi Departamentinin təsis olunması. 1974–1975 — İlk AES-nın yerinin müəyyən edilməsi ilə bağlı araşdırmaların aparılması. 1976 — Aralıq dənizi sahilində «Akkuyu» sahəsində AES tikintisi ilə bağlı lisenziyanın alınması. 1981 — Atom Enerjisi üzrə Beynəlxalq Agentlik ilə əməkdaşlıq haqqında anlaşmanın imzalanması. 1977–2009 — Türkiyə Respublikasında dörd enerji blokunun tikintisi üçün tenderlərin keçirilməsi. Türkiyənin cənubunda, aralıq dənizi sahilində tikiləcək ilk atom elektrik stansiyası «Akkuyu AES»-dır.
Dənizdə şüa (film, 1967)
Film Gilov adasındakı mayakın işçilərindən, onların xidmətindən, mayakın gecələr balıqçılara, dənizçilərə və neftçilərə yol göstərməsindən danışır.
Albaniyanın bərpa olunan enerjisi
Albaniyanın Bərpa olunan enerjisinə bioyanacaq, geotermal mənbələr, su, günəş və külək ilə işləyən elektrik stansiyaları daxildir. Albaniyanın bərpa olunan energetikasının əsasını hidroelektrostansiyalar təşkil edir, baxmayaraq ki çəkilmə zamanı və ya su aşağı səviyyədə olanda energetika ilə problemlər yaşanır. Albaniyanın günəş, külək və geotermal mənbələrin istifadəsi üçün böyük potensiala malikdir, bu da Aralıq dənizi iqlimi, təbii su quyuları və balkan dağların mövcud olması ilə bağlıdır. Elektrik enerjisinin əsas mənbəyi SES-di, hansı ki hər halda daimi dəyişikliklərə görə etibarsız sayılır. Albaniya 2012-ci ildə 100 min yaşayış evini elektriklə təmin edilməsi üçün Verbumd adlı Avstriya şirkəti ilə Aşta SES-in tikintisi barədə müqavilə bağlamışdı. BMT-nin inkişaf proqramı Albaniyada günəş batareyalarının tikintisini planlaşdırır. Proqram daxilində 75 min m² sahəli panellərin quraşdırılması üçün 2,75 milion ABŞ dolları xərcləndi. 2010-cu ildə 10 700 m² quraşdırılmışdır, batareyaların qalan hissəsinin tikintisi 2015-ci ildən davam etdirildi. Günəş batareyaları ildə 2100 - 2700 günəş saatı üçün nəzərdə tutulub. Bu növ energetika yaşayış evləri, kommersiya və sənaye binalarının istilik və elektriklə təchizatı üçün istifadə oluna bilər.
Avropa Atom Enerjisi Birliyi
Avropa Atom Enerjisi Birliyi (ing. European Atomic Energy Community) və ya qısaca Avratom — atom enerjisinin istehsalı və istifadəsi sahəsində birgə işlərin əlaqələndirilməsi və maliyyələşdirilməsi, atom sənayesinin ikişafı, nüvə energetikası sahəsində tədqiqatların aparılması, parçalanan materialların istifadəsi üzərində nəzarətin həyata keçirilməsi və s. üzrə Avropa dövlətləri təşkilatı. 1957-ci ildə yaradılması haqqında sazişi Avropa İqtisadi Birliyinin 6 üzvü — Fransa, AFR, İtaliya, Niderland, Belçika və Lüksemburq imzalamışlar. Saziş 1958-ci il yanvarın 1-dən qüvvəyə minmişdir. 1957cü ildən Böyük Britaniya, İrlandiya və Danimarka Avratoma daxil olmuşlar. Onun rəsmi vəzifəsi nüvə sənayesi yaratmaq və inkişaf etdirməkdir. 1959-cu ilin yanvarında Avratomun üzvləri nüvə materiallarının ticarəti üzrə ümumi bazar yaratdılar. Bununla əlaqədar tədqiqat işləri aparmaq, texniki informasiyaları mübadilə etmək, kapital qoyuluşuna maraq oyatmaq, çox baha başa gələn müəssisələri qarşılıqlı surətdə tikmək, nüvə xammalı ilə təchizat, kapital və işçi qüvvəsinin sərbəst hərəkəti və s. nəzərdə tutulur.
Beynəlxalq Nüvə Enerjisi Agentliyi
Beynəlxalq Atom Enerjisi Agentliyi (ing. International Atomic Energy Agency) və ya qısaca BAEA (ing. IAEA) — BMT-nin ixtisaslaşdırılmış agentliyi. Beynəlxalq Atom Enerjisi Agentliyi (AEBA), nüvə enerjisindən sülh istifadəsini təşviq etmək və nüvə silahları da daxil olmaqla, onun hər hansı bir hərbi məqsəd üçün istifadəsinə maneə törətmək istəyən beynəlxalq bir təşkilatdır. == Təşkilatın yaradılması == BAEA, 29 iyul 1957-ci ildə müstəqil bir təşkilat kimi yaradılmışdır. Birləşmiş Millətlər Təşkilatından öz beynəlxalq müqaviləsi ilə qurulmuş olsa da, statusuna görə həm Birləşmiş Millətlər Təşkilatının Baş Assambleyasına, həm də Təhlükəsizlik Şurasına məlumat verir. == Fəaliyyəti və məqsədləri == Beynəlxalq Atom Enerjisi Agentliyinin Avstriyanın Vyana şəhərində qərargahı var. Beynəlxalq Atom Enerjisi Təşkilatının Toronto, Kanada və Yaponiyanın Tokio şəhərində yerləşən iki "Regional Təhlükəsizlik Təşkilatları Ofisləri" var. Beynəlxalq Atom Enerjisi Agentliyinin Nyu-Yorkda, ABŞ-də və İsveçrənin Cenevrə şəhərində yerləşən iki əlaqə bürosu var. Bundan əlavə, AEBA Seibersdorf, Avstriya, Monako və Triest şəhərlərində yerləşən laboratoriya və tədqiqat mərkəzlərinə malikdir.
Qabarma və çəkilmə enerjisi
Qabarma və çəkilmə enerjisi - Qabarma-çəkilmə səbəbi ilə yer dəyişdirən su kütlələrinin sahib olduğu kinetik və ya potensial enerjinin elektrik enerjisinə çevrilməsidir. Qabarma-çəkilmə enerjisini elektrikə çevirmək üçün geniş şəkildə, uyğun olan qoyların ağzının bir anbarla bağlanılaraq, gələn suyun tutulması, çəkilmə sonrasında da yüksəklik fərqindən faydalanılaraq turbinlər vasitəçiliyi ilə elektrik çıxarılması hədəflənər. 24.8 Saatda bir təkrarlanan qabarma-çəkilmə hərəkətləri, nizamlı bir enerji qaynağı olması baxımından maraqlı olmaqla birlikdə, enerji istehsal müddətinin 6-12 saatla məhdud olması bir üstünlüksüz yaratmaqdadır. Suyun potensial enerjisinin %80-ni elektrik enerjisinə çevirə bilən qabarma-çəkilmə enerjisi, günəş enerjisi kimi digər alternativ enerji qaynaqlarına görə daha yüksək bir məhsuldarlığa malikdir.
Beynəlxalq Atom Enerjisi Agentliyi
Beynəlxalq Atom Enerjisi Agentliyi (ing. International Atomic Energy Agency) və ya qısaca BAEA (ing. IAEA) — BMT-nin ixtisaslaşdırılmış agentliyi. Beynəlxalq Atom Enerjisi Agentliyi (AEBA), nüvə enerjisindən sülh istifadəsini təşviq etmək və nüvə silahları da daxil olmaqla, onun hər hansı bir hərbi məqsəd üçün istifadəsinə maneə törətmək istəyən beynəlxalq bir təşkilatdır. BAEA, 29 iyul 1957-ci ildə müstəqil bir təşkilat kimi yaradılmışdır. Birləşmiş Millətlər Təşkilatından öz beynəlxalq müqaviləsi ilə qurulmuş olsa da, statusuna görə həm Birləşmiş Millətlər Təşkilatının Baş Assambleyasına, həm də Təhlükəsizlik Şurasına məlumat verir. Beynəlxalq Atom Enerjisi Agentliyinin Avstriyanın Vyana şəhərində qərargahı var. Beynəlxalq Atom Enerjisi Təşkilatının Toronto, Kanada və Yaponiyanın Tokio şəhərində yerləşən iki "Regional Təhlükəsizlik Təşkilatları Ofisləri" var. Beynəlxalq Atom Enerjisi Agentliyinin Nyu-Yorkda, ABŞ-də və İsveçrənin Cenevrə şəhərində yerləşən iki əlaqə bürosu var. Bundan əlavə, AEBA Seibersdorf, Avstriya, Monako və Triest şəhərlərində yerləşən laboratoriya və tədqiqat mərkəzlərinə malikdir.