Lüğətlərdə axtarış.

Axtarışın nəticələri

OBASTAN VİKİ
Mexanika
Mexanika — fizikanın cisimlərin hərəkəti və onlara təsir edən qüvvələri öyrənən bölməsi. == Klassik və kvant mexanikalarının fərqləri == Mexanika əsas olaraq klassik və kvant mexanikası olaraq 2 bölməyə ayrılır. Tarixi olaraq baxıldığı zaman, klassik mexanika ilk icad edilib (1687), kvant mexanikası isə yeni icadlar arasındadır (XX əsr). Klassik mexanikanın əsasının İsaak Nyutonun 5 iyul 1687-ci ildə nəşr edilmiş "Təbiət fəlsəfəsinin riyazi əsasları" əsəri ilə qoyulduğu qəbul edilir. Əsasən, digər dəqiq elmlərin modellərini qurarkən istifadə edilir. Makroskopik proseslərə baxıldığı zaman, "kvant mexanikası" ilə aparılacaq hesablamalar hədsiz dərəcədə qəlizdir və "klassik mexanika"nın tətbiqi daha məntiqlidir. Kvant mexanikası, daha geniş istifadəyə sahibdir, çünki "klassik mexanika" sadəcə "kvant mexanikası"nın müəyyən xüsusi şərtlər altındakı vəziyyətidir. "Kvant mexanikası" atomik və sub-atomik səviyyədəki hadisələrin anlaşılması və təxmini mövzusunda "klassik mexanika"dan üstündür. == Eynşteyn və Nyuton mexanikalarının fərqləri == Mexanika klassik və kvant mexanikası olaraq bölünəbiləcəyi kimi, Eynşteyn və Nyuton mexanikası olaraq da 2 bölməyə ayrıla bilər. Eynşteynin "Ümumi və xüsusi nisbilik nəzəriyyələri" Nyuton və Qalileonun ortaya çıxardıqları "Klassik mexanika"nı əsaslı dərəcədə genişlətmiş və "klassik mexanika"ya düzəltmə gətirmişdir, hansı ki, əsasən cismin sürətinin işıq sürətinə (hansını ki, aşmaq mümkün deyil) yaxınlaşdığı hallar üçün böyük əhəmiyyət kəsb edir (elektronların işıq sürəti ilə hərəkət ettikləri qəbul edildiyi üçün, elektronikada əsasən "Eynşteyn mexanikası" istifadə edilir).
Mexanizm
Mexanizm — bir elementin hərəkəti başqalarının məcburi hərəkətini yaradan, hissələrdən ibarət kompleksdır. Bu halda sistemin bütün nöqtələrinin sürətləri və təcilləri təyin oluna bilir. Mexanizmlər hərəkəti ötürmək üçün tətbiq olunurlar. Mexanizmlərin hərəkəti cütlərlə təyin olunur. Menanizmdə bir-biri ilə əlaqədə olan elementlərə kinematk cütlər deyilir. Cütlər isə öz növbəsində bəndlərdən təşkil olunur. Məsələn, prizmatik kanalda oturdulmuş bənd irəli geri hərəkət edə bilir, ona görə də onlar birlikdə cüt təşkil edirlər. Silindrik oymaqda oturdulmuş içlik kinematik cütdürlər. Vint və qayka da kinematik cüt kimi baxıla bilər. Mexanizmlər ötürmələrin bir növüdür.
Analitik mexanika
Analitik mexanika — klassik mexanika (nəzəri mexanika) bölməsi; maddi nöqtələr və ya cismlər sisteminin sonlu sayda parametrlərlə dəqiq müəyyən edilə bilən vəziyyətini öyrənir. == Haqqında == Analitik mexanika əsasən, mümkün yerdəyişmələr prinsipi, kanonik çevirmələr (tənliklər), hərəkətin dayanıqlığı, cazibə nəzəriyyəsi və s. məsələləri əhatə edir. Analitik mexanika ayrıca elmi fənn kimi 18-ci əsrdə yaranmışdır. Bu, analitik rabitələr, ümumiləşmiş koordinatlar, sərbəstlik dərəcəsi və s. sahəsində görkəmli alimlərin (L.Eyler, J.D’Alamber, J.Laqranj və başqaları) elmi işlərinin sayəsində olmuşdur. Analitik mexanika sonrakı inkişafına mümkün yer dəyişmələr prinsipi, ümumiləşmiş impuls, Hamilton funksiyası, inteqral invariantları, hərəkətin dayanıqlığı və s. sahəsində mühüm tədqiqatları olan K.Qauss, U.Hamilton, K.Yakobi, M.Ostroqradski, A.Puankare, A.Lyapunov və başqa alimlərin işləri təkan vermişdir. Analitik mexanika metodları nəzəri fizikanın bir çox sahələrinə (klassik sahə nəzəriyyəsi, kvant mexanikası, nisbilik nəzəriyyəsi və s.) də tətbiq edilir. == Mənbə: == Azərbaycan Milli Ensiklopediyası (25 cilddə).
Blok (mexanika)
Blok — çənbəri üzərində nov olan və oxa nəzərən fırlana bilən çarx olub sadə mexanizmlərə aiddir və iki növü vardır: tərpənən və tərpənməz bloklar. Tərpənən blok - qüvvədə 2 dəfə qazanc əldə etmək məqsədi ilə istifadə olunan birinci növ lingdir. Birinci növ ling - qollara təsir edən qüvvələrin hər ikisi dayaq nöqtəsindən bir tərəfdə olan lingdir. Blokdan aşırılmış ipə F qüvvəsi ilə təsir etdikdə, o dayaq nöqtəsi ətrafında dönür. Bu qüvvənin qolu blokun OB=2r diametrinə bərabərdir. Blokdan asılan yükə təsir edən ağırlıq qüvvəsinin həmin dayaq nöqtəsinə nəzərən qüvvə qolu isə OA=r - dir. Hec bir mexanizm işdə qazanc vermir Blokun tarazlıq şərti - bloku saat əqrəbi istiqamətində fırladan qüvvələrin momentləri cəminin saat əqrəbinin əksi istiqamətində fırladan qüvvələrin momentləri cəminə bərabər olmasıdır: F2r=mgr. Buradan , F=mg/2. Yəni,tərpənən blok qüvvədə 2 dəfə qazanc verir. Tərpənməz blok - qüvvədə qazanc verməyib, onun təsir istiqamətini dəyişən və qolları bərabər olan ikinci növ lingdir.
Gərginlik (mexanika)
Gərginlik — deformasiya olunmuş cismdə xarici qüvvələrin təsirindən yaranan daxili müqavimət parametridir. Verilmiş nöqtədə gərginlik deformasiya zamanı sərt qüvvənin onun təsiri istiqamətindəki elementar sahəyə nisbəti ilə təyin olunur. Ümumi şəkildə gərginlik vahid sahəyə ( ΔA) düşən qüvvə (ΔF) ilə xarakterizə olunur: σ = lim Δ A → 0 Δ F Δ A = d F d A . {\displaystyle \sigma =\lim _{\Delta A\to 0}{\frac {\Delta F}{\Delta A}}={dF \over dA}.} İki növ gərginlik mövcuddur. Normalgərginlik – səthə təsir edən normal qüvvə istiqamətində yaranır və səth böyu bərabər paylanır. Çubuq əyildikdə isə gərginlik oxboyu qeyri-bərabər paylanır. Normal gərginlik belə tapılır: σ N = F A {\displaystyle \sigma _{N}={\frac {F}{A}}} ,burada F = | F → ⊥ | {\displaystyle F=|{\vec {F}}_{\perp }|} Normal istiqamətdə təsir edən qüvvə və A {\displaystyle A} səthin sahəsidir. Əyilmədə gərginlik isə: σ M = M I ⋅ z = M W {\displaystyle \sigma _{M}={\frac {M}{I}}\cdot z={\frac {M}{W}}} ,burada M = | M → | {\displaystyle M=|{\vec {M}}|} əyici moment, I {\displaystyle I} ətalət momenti, z {\displaystyle z} qüvvə ilə dayaq nöqtələri arasındakı məsafə və W {\displaystyle W} müqavimət momentidir. Toxunan gərginlik səthə toxunan boyunca yaran gərginlik olub, normal gərginliyə perpendikulyar yaranır. Bir nöqtəyə təsir edən gərginlik üç müstəvidə baxılır.
Klassik mexanika
Fizikada klassik mexanika - mexanikanın iki əsas bölməsindən biri olub, qüvvələr sisteminin təsiri altında cisimlərin hərəkətini təsvir edən fizika qanunlarını əhatə edir. Cisimlərin hərəkətinin öyrənilməsi çox qədim tarixə getməklə, elm, texnika və texnologiyada klassik mexanikanı ən böyük və qədim fənn edir. Klassik mexanika makroskopik obyektlərin hərəkətini, roketlərdən maşın hissələrinə kimi, eləcə də astronomik obyektlərin, məsələn, kosmik gəmilərin, planetlərin, ulduzların və qalaktikaların həkətini xarakterizə edir. Bununla yanaşı,fənn daxilində bir çox ixtisaslaşmalar qazları, mayelərı, bərk cisimlərı və başqa xüsusi mövzuları əhatə edir. Klassik mexanikanın işıq sürətinə yaxın olmayan sürətlə və böyük obyektlərlə məhdudlaşan mühitlərdə tətibiqi olduqca dəqiq nəticələr verir. Baxılan obyekt kifayət qədər kiçik olduqda, mexanikanın digər əsas bölməsi olan kvant mexanikasının daxil edilməsi zərurəti yaranır, hansı ki, cisimlərin atomik təbiətini makroskopik fizika qanunları ilə uzlaşdırır və atom və molekulların dalğa-zərrəcik dualizmini (ikili xüsusiyyətini) öyrənir. Obyektlərin işıq sürətinə yaxın yüksək sürətli hallarında, klassik mexanika xüsusi nisbilik nəzəriyyəsi ilə əvəzlənir. Ümumi nisbilik nəzəriyyəsi Nyutonun ümumdünya cazibə qanunu ilə xüsusi nisbilik nəzəriyyəsini özündə birləşdirməklə, fiziklərə dərin səviyyədə qravitasiya ilə işləmək imkanını verir. == Maddi nöqtə == Müəyyən məqsədlər üçün ölçüləri nəzərə alınmayan cismə deyilir. Məsələn Yer kürəsinin Günəş ətrafında hərəkətini öyrənərkən ona maddi nöqtə kimi baxmaq olar.
Mexanika mühəndisliyi
Maşınqayırma — ağır sənayenin bir sahəsi olub müxtəlif maşınlar, avadanlıqlar, cihazlar, həmçinin müdafiə əhəmiyyətli məhsullar və istehlak malları istehsal edən iqtisadiyyat sahəsi. == Ümumi xarakteristika == İqtisadiyyatın bütün sahələrini əmək aləti ilə təmin etdiyinə görə mütəxəssislər maşınqayırmanı sənayenin ürəyi adlandırırlar. Maşınqayırma elmtutumlu sahədir və elmi-texniki tərəqqinin bələdçisidir. O eyni zamanda elmi-texniki nailiyyətlərin sınaqdan keçirilməsi poliqonudur. Yeni texniki, texnoloji, təşkilati, estetik, erqonomik ideyalar burada yaranır, burada həyata vəsiqə alır. Əhalinin daha savadlı hissəsi burada çalışır. Maşınqayırma klassik mühəndislik elmi olub, təkcə maşınların, mühərriklərin və ötürmələrin hazırlanması ilə məhdudlaşmır. Müasir maşınqayırma texnikanın başqa sahələri ilə kəsişən bir çox yeni sahələri də əhatə edir. Bu sahənin kökü fizikaya əsaslanan mexanika, termodinamika, materialşünaslıq və o cümlədən konstruksiyaetmə, simulyasiya, modelləşdirmə kimi müasir informasiya texnologiyası ilə də bağlıdır. Maşınqayırma özü-özlüyündə 100-dən çox ayrı-ayrı istehsallar, sahələr, yarımsahələr, elmi-texniki komplekslərdən ibarətdir.
Mexaniki dalğalar
Dalğa — rəqslərin mühitdə yayılması prosesidir. Mexaniki dalğa mexaniki rəqslərin elastik mühitdə yayılmasıdır. Mexaniki dalğaların yaranması və yayılması üçün ən vacib şərt elastik mühitin olmasıdır. Ümumi dalğa tənliyi budur: x = a cos ⁡ ω ( t − r v ) {\displaystyle x=a\cos \omega (t-{\frac {r}{v}})} Burada x-nöqtənin tarazlıq vəziyyətindən olan yerdəyişməsi, A-rəqsin amplitududur, t-rəqsin başlanması anından hesablanan zaman, v-dalğanın yayılma sürəti, r-rəqsin koordinat başlanğıcından t müddətinə yayıldığı məsafədir. == Dalğanın növləri == Dalğanın 2 növü vardır: Uzununa dalğa – rəqs istiqamətində yayılan dalğaya deylir. Eninə dalğa – rəqslərə perpendikulyar istiqamətində yayılan dalğaya deyilir.Eninə dalğa zərrəciklərin rəqs istiqamətinə perpendikulyar istiqamətdə yayılan dalğaya deyilir. Eninə dalğa dalğa qabarıqlarının və çökəkliklərinin növbə ilə təkrarlanmasıdır. Eninə dalğalar elə mühitdə yayıla bilər ki, orada mühitün formasının dəyişməsi nəticəsində elastiklik qüvvələri yaransın. Ona görə də eninə elastik dalğalar ancaq bərk cisimlərdə yayılır. Qaytanın bir ucunu divara bərkidib digər ucunu yuxarı-aşağı rəqs etdirməklə eninə dalğaların qaytan boyunca necə yayıdığını görə bilərik.
Mexaniki deformasiya
Deformasiya — xarici qüvvənin təsiri ilə cismin forma və ölçülərinin dəyişməsidir. Onun aşağıdakı halları vardır: Elastik deformasiya – xarici qüvvenin təsiri kəsildikdən sonra cismin öz əvvəlki forma və ölçülərini almasına deyilir. Plastik deformasiya – xarici qüvvənin təsiri kəsildikdən sonra cismin öz əvvəlki forma və olçülərini almamasına(qalıq qalmasına)deyilir. Bərk cisimlərdə deformasiyanın növləri – dartılma,sıxılma,sürüşmə,burulma,əyilmədir. Dartılma deformasiyası – cismin uzunluğunu artmasına səbəb olan deformasyadır. Məsəlsən məftillərin, rezinin uzanması və s. Sıxılma deformasiyası – uzunluğun azalmasına səbəb olan deformasyadır. Sürüşmə deformasiyası – cismin paralel təbəqələrinin bu təbəqələrə paralel qüvvələrin təsiri ilə sürüşməsinə deyilir. Ayrı-ayrı metal hissələrini bağlayan bolt və pərçimlər sürüşmə deformasyasına məruz qalır. Burulma deformasiyası – bərk cisimlərin uclarına əks istiqamətdə yönəlmiş qüvvə momentləri tətbiq olunanda yaranan deformasyadır.
Mexaniki emal
Mexaniki emal – müxtəlif materiallardan hazırlanmış pəstaha son və ya sonrakı emal mərhələləri üçün lazımi dəqiqliyi və formanı vermək üçün tətbiq olunan emal növüdür. Maşınqayırmada əsasən üç mexaniki emal üsulu tətbiq olunur: 1. Kəsmə ilə emal, burada pəstah metalkəsən dəzgahda kəsici alətin köməy ilə addım-addım yonularaq lazımi formaya salınır. Tətbiq olunan kəsmə üsulları: xarici səthlər üçün torna, pardaqlama,hamarlama, cilalama, superfiniş, daxili səthlər üçün – içyonma, burğulama, zenkerləmə, rayberləmə, dartma, pardaqlama, cilalama, honalama. müstəvi səthlər üçün yonma, frezləmə və pardaqlama.2. Plastiki deformasiya üsulu ilə xarici qüvvənin təsiri altında pəstah sıxılır, bu zaman o formasını, ölçüsünü, fiziki-mexaniki xassələrini dəyişir. Buraya döymə, ştamplama, pressləmə və yayma daxildir. 3. Elektrofiziki emal elektrik cərəyanının xassələrinə əsaslanır: elektro qığılcımla emal, elektro impulsla emal, elektro qövslə emal. == Mənbə == Əliyev, R.R. Maşınqayırma leksikonu.
Mexaniki hərəkət
Mexaniki hərəkət — zaman keçdikcə bir cismin (yaxud maddi nöqtənin) digər cismə nəzərən, həmçinin eyni bir cismin ayrı-ayrı hissələrinin bir-birinə nəzərən məkanda yerdəyişməsi. Mexaniki hərəkəti riyazi baxımdan təsvir etmək üçün yerdəyişmə, gedilən yol, sürət, təcil və zaman kimi anlayışlardan istifadə olunur. Hərəkəti öyrənmək, yəni zaman keçdikcə cismin mexaniki yerdəyişməsini müəyyən etmək üçün müvafiq koordinat sistemi seçmək və onu hesablama cisminə bağlamaq lazımdır. Bundan əlavə gedilən yolun uzunluğunu təyin etmək üçün uzunluq etalonuna və zamanı ölçmək üçün ölçü cihazı rolu oynayan saata da ehtiyac vardır. Adətən sadaladığımız bu dörd ünsür — hərəkəti öyrənmək üçün seçdiyimiz cisim ona bağlı koordinat sistemi, uzunluq etalonu və saat birlikdə hesablama sistemi adlandırılır. Hər konkret mexaniki hərəkəti öyrənmək üçün müvafiq hesablama sistemi seçilir. Hərəkətin öyrənilməsi üçün vasitə rolunu oynayan koordinat sisteminin (məsələn, düzbucaqlı dekart koordinat sisteminin) başlanğıcı hesablama cismində yerləşdirilir və hərəkət məhz bu koordinat sisteminə nəzərən öyrənilir. Mexaniki hərəkət zaman keçdikcə cismin fəzada yerdəyişməsi olduğundan zaman və məkan anlayışları ilə yaxından tanış olmaq lazımdır. Klassik mexanikanın banisi Nyuton zaman və məkanı mütləq qəbul etmişdir. Nyutona görə zaman hesabat sistemindən asılı olmayaraq müntəzəm davam edir və bütün hesabat sistemləri üçün eynidir.
Mexaniki iş
Mexaniki iş — cismə təsir edən qüvvənin modulu, yol və qüvvə ilə yol arasındakı bucağın kosinusu hasilinə bərabər olan skalyar fiziki kəmiyyətdir. == Düsturlar == 1) Qüvvə ilə hərəkət istiqaməti arasındakı bucaq α olarsa, A = F × S × c o s α {\displaystyle A=F\times S\times cos\alpha } F {\displaystyle F} — qüvvə, S {\displaystyle S} isə yoldur. 2) Mexaniki iş güclə zamanın hasilinə bərabərdir: A = N × t {\displaystyle A=N\times t} . N {\displaystyle N} — güc t {\displaystyle t} isə zamandır. 3) Elektrik cərəyanının işi - verilmiş hissədəki gərginliklə cərəyan şiddəti və cərəyanın keçmə müddətinin hasilinə bərabərdir: A = U × J × T {\displaystyle A=U\times J\times T} düsturu ilə hesablanır. U {\displaystyle U} — gərginlik J {\displaystyle J} — cərəyan şiddəti T {\displaystyle T} isə zamandır. == İşin vahidi == 1 Coul-1 Nyuton qüvvənin qüvvə istiqamətində gedilən 1m yolda gördüyü işə deyilir və BS-də iş vahidi olaraq götürülür. 1 C = 1 N × m {\displaystyle 1C=1N\times m} A = F × S × c o s α {\displaystyle A=F\times S\times cos\alpha } ifadəsindən göründüyü kimi əgər qüvvə hərəkət istiqamətindədirsə, iş ən böyük yəni A=FS, iti bucaq əmələ gətirirsə iş müsbət, düz bucaq əmələ gətirirsə A=0, kor bucaq əmələ gətirirsə mənfi olur. Potensiallı sahədə qapalı trayektoriya üzrə görülən iş sıfır olur. Həm də potensiallı sahədə görülən iş trayektoriyanın formasından asılı olmayıb başlanğıc və son nöqtələrin vəziyyəti ilə təyin olunur.
Mexaniki qüvvələr
Mexaniki qüvvələr — Təbiətdə müxtəlif növ qüvvələrə rast gəlinir: cazibə qüvvəsi, elektrik və maqnit qüvvələri, elastik qüvvə, səthi gərilmə qüvvəsi, sürtünmə qüvvəsi və s. Sadaladığımız bu qüvvələrin adları onların təzahür formaları ilə əlaqədardır. Məsələn, səthləri bir-birinə toxunan iki cisimdən biri digərinə nəzərən nisbi hərəkət edərsə onlar arasında yaranan təsir qüvvəsi sürtünmə qüvvəsi, uzanmış elastiki cismi ilk vəziyyətə qaytarmağa çalışan qüvvə elastiki qüvvə, sükunətdə olan iki yüklü hissəcik arasında yaranan təsir qüvvəsi elektrik qüvvəsi adlanır. Lakin hadisələrin mahiyyəti ilə dərindən tanış olduqda adını çəkdiyimiz bu üç qüvvənin eyni bir təbiətə — elektromaqnit təbiətinə malik olduğuna inanmaq olar. Meydanagəlmə xüsusiyyətlərinə görə qüvvələri iki qrupa bölmək olar: birbaşa təmasla meydanagələn qüvvələr və sahə qüvvələri. Deyilənləri əyani təsəvvür etmək üçün şəkil 1-ə nəzər salaq. Yayı uzatmaq və arabacığı hərəkət etdirmək üçün yayı və arabacığı dartmaq, qol vurmaq üçün isə topa birbaşa zərbə endirmək lazımdır. Göründüyü kimi, hər üç halda yalnız təsirə məruz qalan cisimlə birbaşa təmasda olmaqla onları hərəkətə gətirmək mümkündür.Bununla bərabər birbaşa təmasda olmayan cisimlər arasında da təsir qüvvələri mövcuddur. Məsələn, bir-birindən kifayət qədər uzaqda yerləşmiş göy cisimləri arasında, müxtəlif işarəli elektrik yükləri daşıyan cisimlər arasında, dəmirlə maqnit arasında qarşılıqlı təsir qüvvələrinin mövcud olduğu hər kəsə məlumdur.Təsir göstərən bütün qüvvələri təbiətlərinə görə qruplaşdırsaq təbiətdə cəmi dörd növ qüvvənin mövcud olması nəticəsinə gələrik. Fundamental qüvvələr adlanan həmin qüvvələr bunlardır == Qravitasiya (cazibə) qüvvəsi == Qravitasiya qüvvəsi universal qüvvədir.
Mexaniki reduktor
Mexaniki reduktor — fırlanma momentini bir və ya bir neçə mexaniki ötürmənin köməyi ilə ötürən və çevirən mexanizmdir. Mexaniki ötümənin əsas xarakteriskaları faydalı iş əmsalı, ötürmə ədədi, ötürülən güc, valların maksimal bucaq sürəti, aparan və aparılan valların sayı, növü və ötürmə pillərinin sayıdır. Adətən giriş valının böyük bucaq sürətini çıxış valının aşağı sürətinə çevirən və bununla fırlanma momentini artıran qurğulara reduktor deyilir. Belə reduktorlar demultiplikator adlanır. Əksinə işləyən reduktorlar isə multiplikatorlardır. Pilləli ötürmə ədədinə malik reduktorlar sürətlər qutusu kimi tanınır. Pilləsiz ötürmələrlə işləyənlər isə variatorlardır. == Təsnifatı == Hər şeydən öncə onlar mexaniki ötürmənin növlərinə görə təsnifatlaşdırılırlar: silindirk, konik, sonsuzvint, planetar, dalğavari, spiroid və kombinəedilmiş. Reduktorlar həmçinin gövdə, soyuma sistemi, istifadə olunan yastıqların növü, fırlanma sürəti, ötürmə ədədi, ötürülən gücə görə də fərqləndirilirlər. == Reduktorun gövdəsi == Seriyalı istehsalda standartlaşdırılmış tökmə gövdələrdən istifadə edilir.
Mexaniki çəkic
Mexaniki çəkic yaxud deşər — bərk , məsələn dağ çöküntü süxurları, asfalt, beton konstruksiyaların dəlinməsi, kəsilməsi yaxud eşilməsi üçün nəzərdə tutulmuş zərbə hərəkətli əl aləti. Hər hansı təhriklə (məsələn pnevmatika ilə) hərəkətə gətirilən metal süngü və ya tir. Təhrik hissəsinin zərbə hissəsinə ötürdüyü impuls nəticəsində, dəmir süngü emal olunan metariala dəlməklə və ya kəsməklə təsir edir.
Nəzəri mexanika
Nəzəri mexanika — mexaniki hərəkətlər haqqında ümumi qanunları və cisimlərin qarşılıqlı təsirini öyrənən elmdir. Fizikanın bir bölməsi olmuş nəzəri mexanika özünə aksiomlar şəklində fundamental əsas yaradaraq ayrıca elmsahəsi kimi inkişaf etmişdir. O texnikada tətbiqi xarakter daşıdığından geniş tətbiq olunur. Nyutona görə "nəzəri mexanika istənilən qüvvə ilə yaradılmış hərəkətlər haqqında və istənilən hərəkəti yaratmaq üçün tələb olunan isbat olunmuş qüvvələr haqqında elmdir". Nəzəri mexanika aksiomalara əsaslanan bir qanunlara əsaslanır. Bu aksiomlar tətbiqi mexanikanın həqiqəti haqqında induktiv xarakter daşıyır. Nəzəri mexanika deduktiv xarakterə malikdir. Təcrübələrdən əldə edilmiş aksiomalara əsaslanan nəzəri mexanika qanunları sərt riyazi asılılıqlar əsasında təsvir olunurlar. Nəzəri mexanika təbiət elmlərinin bir hissəsinə olub hissələr yox onların modelləri ilə işləyən riyazi üsullardan istifiadə edir. Belə modellərə aşağıdaklar aiddirlər: materiya nöqtəsi və materiya nöqtələr çoxluğu, mütləq bərk cism və bərk cismlər sistemi, bütöv mühitin deformasiyası.Adətən nəzəri mexanikada aşağıdakı bölmələri vardır: kinematika statika dinamikaNəzəri mexanikada istifadə olunan riyazi üsullar: vektor hesabatı v.
Qazpaylayıcı mexanizm
Qazpaylayıcı mexanizm- daxili yanma mühərriklərinin silindrlərinə karbüratordan gələn qaz qarışığının vaxtında paylanması və iş prosesində yaranan qazların xaric edilməsinə xidmət edir. Bu, silindrlərin sorma və xaricetmə klapanalarının paylayıcı valın dirsəkləri ilə idarəsi sayəsində yerinə yetirilir. Paylayıcı val, dirsəkli valla dişli qayış və ya zəncir ötürməsinin köməyi ilə əlaqələndirilərək onunla sinxronlaşdırlmış hərəkət icra edir. == Təsnifatı == Qazpaylayıcı mexanizm paylayıcı valın vəziyyətindən asılı olaraq iki növə bölünürlər: Yuxarıda (silindr başlığında ) yerləşmiş vallı, Aşağıda (mühərrik blokunda) yerləşmiş vallı.Şəkildə üst hissədə yerləşmiş qazpaylayıcı mexanizm təsvir edilmişdir. Paylayıcı val iş tsiklinə uyğun dirsəkli valdan aldığı fırlanma hərəkəti zamanı dönərək dirsəkləri ilə klapanları ardıcıl olaraq itələyir. Klapanın geriyə qayıtması mexanizmdə quraşdırılmış güclü yayların hesabına baş verir. Paylayıcı val ya bir başa klapanın başında yerləşmiş itələyiciyə, ya da ox ətrafında dönən lingdən istifadə edilir. İkinci quruluş daha çox altda yerləşmiş paylayıcı valldan istifadə zamanı tətbiq olunur. Dördtaktlı mühərriklərdə klapanlar yüksək temperaturda işləyir. Bunun təsirindən yaranan deformasiyaların qazpaylayıcı mexanizmin işləməsinə təsirini azaltmaq üçün çox vaxt klapandöndərən mexanizmdən istifadə olunur.
Relyativist mexanika
Relyativist mexanika — nəzəri fizikanın bölmələrindən biri. İşıq sürətinə yaxın sürətlərdə ( v ≈ c {\displaystyle v\approx c} ) cismin hissəciklərinin klassik hərəkət qanunlarını öyrənir. Relyativist mexanika nisbilik nəzəriyyəsinə əsaslanır. Nyutonun ikinci qanunun relyativist ümumiləşdirilməsi və enerjinin saxlanması qanunu relyativist mexanikanın əsas tənliklərindəndir. v<<c olarsa relyativist mexanika Nyuton mexanikasına çevrilir. Nyuton mexanikasını isə Nyutonun 3 əsas qanunu təşkil edir.
Metalist Xarkov FK
Metallist — Ukraynanın Xarkov şəhərini təmsil edən futbol klubu. == Tarixi == Klub 1925-ci ildə Xarkov Paravozqayırma Zavodunun nəzdində yaradılıb. Komanda 1925-1936-cı illərdə XPZ, 1939-cu ildə "Zenit", 1939-1946-cı illərdə yenidən XPZ, 1946-cı ildə "Traktor", 1946-1956-cı illərdə "Dzerjinets", 1956-1966-cı illərdə "Avanqard" adları ilə çıxış edib. 1967-ci ildən indiki adı ilə fəaliyyət göstərir. 1947-1949-cu illərdə "Dzerjinets" adı ilə və 1956-cı ildə şəhərin digər təmsilçisi "Lokomotiv"in yerinə "Avanqard" adı ilə SSRİ çempionatına qoşulmuşdur. Həmin ildən bəri SSRİ çempionatının müxtəlif dəstələrində oynayan "Metallist" 1988-ci ildə ölkə kubokunu qazanmaqla avrokuboklarda debüt etmək imkanı əldə etmişdir. == Avropa kuboklarında iştirak == 2 dəfə Avropa kuboklarında iştirak edib. == Uğurları == 1983-cü ildə ölkə kubokun finalçısı olan xarkovlular digər uğurlarını müstəqillik illərində əldə edib. 1992-ci ildən çıxış etdikləri Ukrayna miqyaslı yarışlarda ilk turnirdə kubokun finalına yüksələn "Metallist" ölkədə "bürünc komanda" imici qazanıb. Onlar ardıcıl 6 il Ukrayna çempionatının 3-cüsü olublar.
Mexaniki çökmə yataq
Mexaniki çökmə yataq — tərkibində faydalı qazıntılar olan süxurların mexaniki aşınması və hissəciklərin su axınları ilə daşınıb sonradan çökməsi nəticəsində əmələ gələn ilkin çökmə yataq. Daşınma prosesində hissəciklərin formasından, ölçüsündən, sıxlığından, davamlılığından və daşıyıcı mühitin sürətindən asılı olaraq mexaniki diferensiasiya baş verir. Mexaniki çökmə yataq tikinti materialları (çaqıl, qum, gil) yataqları, nəcib və nadir metal, almaz, qiymətli daşlar, səpinti yataqlar, habelə köklü yataqların yuyularaq yenidən çökməsi nəticəsində yaranan fosforit, kaolinit, dəmir, manqan və b. filiz yataqları aiddir. == Həmçinin bax == Çökmə yataqlar == Mənbə == Geologiya terminlərinin izahlı lüğəti. — Bakı: Nafta-Press, 2006. — Səhifələrin sayı: 679.
Mexanizm dizayn nəzəriyyəsi
Mexanizm dizayn nəzəriyyəsi (ing. mechanism design) — oyunçuların rasional hərəkət etdikləri və iqtisadi aktyorların hərəkətlərinin sosial seçim funksiyası üçün optimal bir həllə səbəb olduğu istədikləri hədəflərə çatmaq üçün mexanizmlər və təşviqlərin yaradılmasına yanaşma olan iqtisadiyyat və oyun nəzəriyyəsi sahəsində bir iş. Bu yanaşma ilk dəfə 1960-cı ildə Leonid Qurviç tərəfindən təklif edilmişdir. == Yaranma tarixi == Leonid Qurviç 1959-1960-cı illərdə iqtisadi resursların əsas müddəalarını ilk dəfə "Resursların bölüşdürülməsi proseslərindəki optimallıq və informasiya səmərəliliyi" məqaləsində formalaşdırmış, 1973-cü ildə həqiqət xüsusiyyətini, daha sonra identifikasiya prinsipini formalaşdırmış və 2006-cı ildə birlikdə Stanley Reiter [ru] ilə "İqtisadi Mexanizmlərin Dizaynı [en]" mexanizmlərinin dizaynı haqqında bir kitab nəşr olundu. Erik Maskin 1980-1984-cü illər üçün məqalələrində "tətbiqetmə nəzəriyyəsi" deyilən bir sənəd hazırladı: lazımi xüsusiyyətlərə sahib olması üçün belə bir protokolun tərtib edilməsi. Və Roger Myerson 1979-1985-ci illər üçün sənədlərində bu yanaşmanı auksionlara tətbiq etmişdir . İsveç Kral Elmlər Akademiyası, 2007-ci ildə Alfred Nobel İqtisadiyyat Memorial Mükafatını Leonid Gurviç, Eric Maskin və Roger Myerson'a "optimal qaynaq bölgüsü mexanizmləri nəzəriyyəsinin təməlini qoyduğuna görə" verdi. == Tərifi == İqtisadi mexanizmlərin dizaynı - ayrı-ayrı iqtisadi agentlərin hərəkətlərinin sosial seçim funksiyası üçün optimal bir həllə gətirib çıxardığı qarşılıqlı əlaqə mexanizmi yaradan yanaşmadır. Mexanizm - iqtisadi agentlərin qarşılıqlı əlaqəsidir, strateji oyun formasıdır. Oyun oyunçuların (iqtisadi agentlərin) hərəkətlərinin təsviri və bir sıra hərəkətlərin nəticəsidir.
Opto-mexaniki siçan
Opto-mexaniki siçan (optomechanical mouse) – optik və mexaniki qurğuların kombinasiyasının köməyilə hərəkətinin istiqamət siqnallarına çevrildiyi siçan konstruksiyası. Optik hissədə işıq-diod və verici cütlükləri olur; mexaniki hissə cərəyan kəsici dəlikləri olan fırlanan təkərciklərdən ibarət olur. Siçan hərəkət etdikdə təkərcik dönür və işıq-diodlardan gələn işıq ya dəlikdən keçərək işıq vericisinə düşür, ya da təkərciyin şəffaf olmayan hissələri tərəfindən bloklanır (qarşısı alınır). İşığın bu dəyişiklikləri verici cütlüklər tərəfindən aşkarlanır və nisbi hərəkət siqnalları kimi interpretasiya olunur. Vericilər fazaca bir-birinə nəzərən azacıq yerini dəyişdiyindən hərəkətin istiqaməti hansı vericinin ilk olaraq indikatorla kontaktı bərpa etməsinə görə müəyyənləşir. Opto-mexaniki siçanda mexaniki hissələrin əvəzinə optik qurğular istifadə edildiyindən, o, çox az-az təmir olunur, ancaq onun işləməsi üçün xüsusi səth (örtük) tələb olunur. 1964-cü ildə ixtiraçı Duqlas Engelbart (Douglas Engelbart) tərəfindən ilk siçan qurğusu (mouse) yaradılmışdır. Bu qurğunun korpusu taxtadan düzəldilmişdi, daxili hissəsi isə bir-birinə perpendikulyar yerləşən, bir ox üzərində fırlanan iki dişli çarxdan ibarət idi. Opto-mexaniki siçanın iş mexanizmi: Siçan hərəkət etdikdə top dönür. Top X və Y silindirlərinə toxunaraq hərəkəti ötürür.
Yeni İqtisadi Mexanizm
Yeni İqtisadi Mexanizm — 1968-ci ildə Macarıstanda başlayan geniş ölçülü iqtisadi islahatdır. İslahatın təsiri 1972–1978-ci illər arasında Şərq blokunun ortaq siyasəti nəticəsində azaldı, amma 1989-cu il inqilabları sona çatana qədər islahat şərtləri vurğulanmasa da, Macarıstan iqtisadiyyatına təsir etməyə davam etdi. İslahat səbəbiylə 1980-ci illərdə Macarıstan bazar mexanizmlərini mərkəzi planlamaya nisbətən yüksək tutdu. Bu, sovet iqtisadiyyatından olduqca fərqli bir yol izləməsinə və eyni zamanda siyasi çətinliklərə səbəb oldu. Qərb qaynaqları islahatların təsiri altındakı macar iqtisadiyyatının Şərq bloku ölkələrindən daha yaxşı performans göstərdiyini bildirdilər. == İslahat == 1956–1968-ci illər arasında Mərkəzi Avropada islahatlar başladı. Bu islahatların başlanğıcı 1956-c il Macarıstan inqilabından başladı. İnkişafı Yanoş Kadarın Macarıstan liderliyinə gəlməsi və Macarıstan Sosialist Fəhlə Partiyasının yaranması ilə nəticələndi. Kadarın 1961-ci ildə "Bizə qarşı olmayanların bizimlə olduğunu" söyləyərək birləşmiş Macarıstan yaratmaq hədəfini yaratdı. Sosial barışa çatan Kadar əsas diqqətini iqtisadi inkişafa yönəltdi.
Çarxqollu-sürgüqollu mexanizm
Çarxqollu-sürgüqollu mexanizmi porşenin irəli-geri hərəkətini fırlanma hərəkətinə (məsələn: daxili yanma mühərriklərində) və əksinə çevirməyə xidmət edir. Çarxqollu-sürüngəc mexanizmini hissələri iki qrupa bölünür, bunlar hərkətli və hərkətsizdirlər: hərəkətli olanlar: porşen, sırğalarla birlikdə, porşen barmağı, sürgü qolu, dirsəkli val yastıqlarla birlikdə və çarx qolu, nazimçarx. hərəkətsiz olanlar:silindrlər bloku (daxili yanma mühərriklərində baza hissə sayılır), silindrlər başlığı, nazimçarx, mufta, silindrlər blokunun başlığı, bərkidici hissələr, kipləşdiricilər, tutqaclar == İşləmə prinsipi == Daxili-yanma mühərriklərində Qazın təsiri altında porşen aşağıya, dirsəkli vala tərəf hərəkət edir. "Porşen-sürgü qolu" və "sürgü qolu-val" cütlüyünü köməyi ilə porşenin xətti hərkəti dirsəkli valın fırlanma hərkətinə çevrilir. Hidravlik dönmə mexanizmində (əks sxem) Dirskli val xaric momentin təsirindən fırlanma hərkəti icra edir. Onun bu hərkəti "val-sürgü qolu-porşen" zənciri vasitəsilə porşenin xətti hərkətinə çevrilir. == İstinad == Kəngərli, Ayaz Mahmud oğlu. Maşın və mexanizmlər nəzəriyyəsi : dərslik / A. M. Kəngərli ; elmi red. S. X. Kərimov. - Bakı : Müəllim, 2004.
Henri Modsli (mexanik)
Henri Modsli (ing. Henry Maudsley; 22 avqust 1771, Vulviç, Böyük London – 14 fevral 1831, Lambet[d], Böyük London) — İngiltərə mexaniki və sənayeçisi. == Həyatı == Henri Modsli 22 avqust 1771-ci ildə Birləşmiş Krallığın paytaxtı London şəhərinin Vulic rayonunda anadan olmuşdur. O, 12 yaşından Vulic cəbbəxanasının emalatxanalarında işləməyə başlamışdır. Modsli 1797-ci ildə supportlu torna dəzgahı quraşdırmaqda vinq və qayka istehsalını mexanikləşdirmişdir. Onun 1810-cu ildə açdığı böyük maşınqayırma zavodunda bir çox yeni dəzgah növləri, buxar maşınları və s. işlənib hazırlanmışdır. Modsli 1815-ci ildə gənclər üçün kanat blokları istehsal edən dəzgahlar xətti yaratmışdır. O, 14 fevral 1831-ci il tarixində Londonun Lambet borosunda vəfat etmişdir. Modsli Vulicdə dəfn edilmişdir.