mexanikaçı
mexaniki-tökmə
OBASTAN VİKİ
Mexaniki dalğalar
Dalğa — rəqslərin mühitdə yayılması prosesidir. Mexaniki dalğa mexaniki rəqslərin elastik mühitdə yayılmasıdır. Mexaniki dalğaların yaranması və yayılması üçün ən vacib şərt elastik mühitin olmasıdır. Ümumi dalğa tənliyi budur: x = a cos ⁡ ω ( t − r v ) {\displaystyle x=a\cos \omega (t-{\frac {r}{v}})} Burada x-nöqtənin tarazlıq vəziyyətindən olan yerdəyişməsi, A-rəqsin amplitududur, t-rəqsin başlanması anından hesablanan zaman, v-dalğanın yayılma sürəti, r-rəqsin koordinat başlanğıcından t müddətinə yayıldığı məsafədir. Dalğanın 2 növü vardır: Uzununa dalğa – rəqs istiqamətində yayılan dalğaya deylir. Eninə dalğa – rəqslərə perpendikulyar istiqamətində yayılan dalğaya deyilir. Eninə dalğa zərrəciklərin rəqs istiqamətinə perpendikulyar istiqamətdə yayılan dalğaya deyilir. Eninə dalğa dalğa qabarıqlarının və çökəkliklərinin növbə ilə təkrarlanmasıdır. Eninə dalğalar elə mühitdə yayıla bilər ki, orada mühitün formasının dəyişməsi nəticəsində elastiklik qüvvələri yaransın. Ona görə də eninə elastik dalğalar ancaq bərk cisimlərdə yayılır.
Mexaniki deformasiya
Deformasiya — xarici qüvvənin təsiri ilə cismin forma və ölçülərinin dəyişməsidir. Onun aşağıdakı halları vardır: Elastik deformasiya – xarici qüvvenin təsiri kəsildikdən sonra cismin öz əvvəlki forma və ölçülərini almasına deyilir. Plastik deformasiya – xarici qüvvənin təsiri kəsildikdən sonra cismin öz əvvəlki forma və olçülərini almamasına(qalıq qalmasına)deyilir. Bərk cisimlərdə deformasiyanın növləri – dartılma,sıxılma,sürüşmə,burulma,əyilmədir. Dartılma deformasiyası – cismin uzunluğunu artmasına səbəb olan deformasyadır. Məsəlsən məftillərin, rezinin uzanması və s. Sıxılma deformasiyası – uzunluğun azalmasına səbəb olan deformasyadır. Sürüşmə deformasiyası – cismin paralel təbəqələrinin bu təbəqələrə paralel qüvvələrin təsiri ilə sürüşməsinə deyilir. Ayrı-ayrı metal hissələrini bağlayan bolt və pərçimlər sürüşmə deformasyasına məruz qalır. Burulma deformasiyası – bərk cisimlərin uclarına əks istiqamətdə yönəlmiş qüvvə momentləri tətbiq olunanda yaranan deformasyadır.
Mexaniki emal
Mexaniki emal – müxtəlif materiallardan hazırlanmış pəstaha son və ya sonrakı emal mərhələləri üçün lazımi dəqiqliyi və formanı vermək üçün tətbiq olunan emal növüdür. Maşınqayırmada əsasən üç mexaniki emal üsulu tətbiq olunur: 1. Kəsmə ilə emal, burada pəstah metalkəsən dəzgahda kəsici alətin köməy ilə addım-addım yonularaq lazımi formaya salınır. Tətbiq olunan kəsmə üsulları: xarici səthlər üçün torna, pardaqlama,hamarlama, cilalama, superfiniş, daxili səthlər üçün – içyonma, burğulama, zenkerləmə, rayberləmə, dartma, pardaqlama, cilalama, honalama. müstəvi səthlər üçün yonma, frezləmə və pardaqlama. 2. Plastiki deformasiya üsulu ilə xarici qüvvənin təsiri altında pəstah sıxılır, bu zaman o formasını, ölçüsünü, fiziki-mexaniki xassələrini dəyişir. Buraya döymə, ştamplama, pressləmə və yayma daxildir. 3. Elektrofiziki emal elektrik cərəyanının xassələrinə əsaslanır: elektro qığılcımla emal, elektro impulsla emal, elektro qövslə emal.
Mexaniki hərəkət
Mexaniki hərəkət — zaman keçdikcə bir cismin (yaxud maddi nöqtənin) digər cismə nəzərən, həmçinin eyni bir cismin ayrı-ayrı hissələrinin bir-birinə nəzərən məkanda yerdəyişməsi. Mexaniki hərəkəti riyazi baxımdan təsvir etmək üçün yerdəyişmə, gedilən yol, sürət, təcil və zaman kimi anlayışlardan istifadə olunur. Hərəkəti öyrənmək, yəni zaman keçdikcə cismin mexaniki yerdəyişməsini müəyyən etmək üçün müvafiq koordinat sistemi seçmək və onu hesablama cisminə bağlamaq lazımdır. Bundan əlavə gedilən yolun uzunluğunu təyin etmək üçün uzunluq etalonuna və zamanı ölçmək üçün ölçü cihazı rolu oynayan saata da ehtiyac vardır. Adətən sadaladığımız bu dörd ünsür — hərəkəti öyrənmək üçün seçdiyimiz cisim ona bağlı koordinat sistemi, uzunluq etalonu və saat birlikdə hesablama sistemi adlandırılır. Hər konkret mexaniki hərəkəti öyrənmək üçün müvafiq hesablama sistemi seçilir. Hərəkətin öyrənilməsi üçün vasitə rolunu oynayan koordinat sisteminin (məsələn, düzbucaqlı dekart koordinat sisteminin) başlanğıcı hesablama cismində yerləşdirilir və hərəkət məhz bu koordinat sisteminə nəzərən öyrənilir. Mexaniki hərəkət zaman keçdikcə cismin fəzada yerdəyişməsi olduğundan zaman və məkan anlayışları ilə yaxından tanış olmaq lazımdır. Klassik mexanikanın banisi Nyuton zaman və məkanı mütləq qəbul etmişdir. Nyutona görə zaman hesabat sistemindən asılı olmayaraq müntəzəm davam edir və bütün hesabat sistemləri üçün eynidir.
Mexaniki iş
Mexaniki iş — cismə təsir edən qüvvənin modulu, yol və qüvvə ilə yol arasındakı bucağın kosinusu hasilinə bərabər olan skalyar fiziki kəmiyyətdir. 1) Qüvvə ilə hərəkət istiqaməti arasındakı bucaq α olarsa, A = F × S × c o s α {\displaystyle A=F\times S\times cos\alpha } F {\displaystyle F} — qüvvə, S {\displaystyle S} isə yoldur. 2) Mexaniki iş güclə zamanın hasilinə bərabərdir: A = N × t {\displaystyle A=N\times t} . N {\displaystyle N} — güc t {\displaystyle t} isə zamandır. 3) Elektrik cərəyanının işi - verilmiş hissədəki gərginliklə cərəyan şiddəti və cərəyanın keçmə müddətinin hasilinə bərabərdir: A = U × J × T {\displaystyle A=U\times J\times T} düsturu ilə hesablanır. U {\displaystyle U} — gərginlik J {\displaystyle J} — cərəyan şiddəti T {\displaystyle T} isə zamandır. 1 Coul-1 Nyuton qüvvənin qüvvə istiqamətində gedilən 1m yolda gördüyü işə deyilir və BS-də iş vahidi olaraq götürülür. 1 C = 1 N × m {\displaystyle 1C=1N\times m} A = F × S × c o s α {\displaystyle A=F\times S\times cos\alpha } ifadəsindən göründüyü kimi əgər qüvvə hərəkət istiqamətindədirsə, iş ən böyük yəni A=FS, iti bucaq əmələ gətirirsə iş müsbət, düz bucaq əmələ gətirirsə A=0, kor bucaq əmələ gətirirsə mənfi olur. Potensiallı sahədə qapalı trayektoriya üzrə görülən iş sıfır olur. Həm də potensiallı sahədə görülən iş trayektoriyanın formasından asılı olmayıb başlanğıc və son nöqtələrin vəziyyəti ilə təyin olunur.
Mexaniki qüvvələr
Mexaniki qüvvələr — Təbiətdə müxtəlif növ qüvvələrə rast gəlinir: cazibə qüvvəsi, elektrik və maqnit qüvvələri, elastik qüvvə, səthi gərilmə qüvvəsi, sürtünmə qüvvəsi və s. Sadaladığımız bu qüvvələrin adları onların təzahür formaları ilə əlaqədardır. Məsələn, səthləri bir-birinə toxunan iki cisimdən biri digərinə nəzərən nisbi hərəkət edərsə onlar arasında yaranan təsir qüvvəsi sürtünmə qüvvəsi, uzanmış elastiki cismi ilk vəziyyətə qaytarmağa çalışan qüvvə elastiki qüvvə, sükunətdə olan iki yüklü hissəcik arasında yaranan təsir qüvvəsi elektrik qüvvəsi adlanır. Lakin hadisələrin mahiyyəti ilə dərindən tanış olduqda adını çəkdiyimiz bu üç qüvvənin eyni bir təbiətə — elektromaqnit təbiətinə malik olduğuna inanmaq olar. Meydanagəlmə xüsusiyyətlərinə görə qüvvələri iki qrupa bölmək olar: birbaşa təmasla meydanagələn qüvvələr və sahə qüvvələri. Deyilənləri əyani təsəvvür etmək üçün şəkil 1-ə nəzər salaq. Yayı uzatmaq və arabacığı hərəkət etdirmək üçün yayı və arabacığı dartmaq, qol vurmaq üçün isə topa birbaşa zərbə endirmək lazımdır. Göründüyü kimi, hər üç halda yalnız təsirə məruz qalan cisimlə birbaşa təmasda olmaqla onları hərəkətə gətirmək mümkündür. Bununla bərabər birbaşa təmasda olmayan cisimlər arasında da təsir qüvvələri mövcuddur. Məsələn, bir-birindən kifayət qədər uzaqda yerləşmiş göy cisimləri arasında, müxtəlif işarəli elektrik yükləri daşıyan cisimlər arasında, dəmirlə maqnit arasında qarşılıqlı təsir qüvvələrinin mövcud olduğu hər kəsə məlumdur.
Mexaniki reduktor
Mexaniki reduktor — fırlanma momentini bir və ya bir neçə mexaniki ötürmənin köməyi ilə ötürən və çevirən mexanizmdir. Mexaniki ötümənin əsas xarakteriskaları faydalı iş əmsalı, ötürmə ədədi, ötürülən güc, valların maksimal bucaq sürəti, aparan və aparılan valların sayı, növü və ötürmə pillərinin sayıdır. Adətən giriş valının böyük bucaq sürətini çıxış valının aşağı sürətinə çevirən və bununla fırlanma momentini artıran qurğulara reduktor deyilir. Belə reduktorlar demultiplikator adlanır. Əksinə işləyən reduktorlar isə multiplikatorlardır. Pilləli ötürmə ədədinə malik reduktorlar sürətlər qutusu kimi tanınır. Pilləsiz ötürmələrlə işləyənlər isə variatorlardır. Hər şeydən öncə onlar mexaniki ötürmənin növlərinə görə təsnifatlaşdırılırlar: silindirk, konik, sonsuzvint, planetar, dalğavari, spiroid və kombinəedilmiş. Reduktorlar həmçinin gövdə, soyuma sistemi, istifadə olunan yastıqların növü, fırlanma sürəti, ötürmə ədədi, ötürülən gücə görə də fərqləndirilirlər. Seriyalı istehsalda standartlaşdırılmış tökmə gövdələrdən istifadə edilir.
Mexaniki çəkic
Mexaniki çəkic yaxud deşər — bərk , məsələn dağ çöküntü süxurları, asfalt, beton konstruksiyaların dəlinməsi, kəsilməsi yaxud eşilməsi üçün nəzərdə tutulmuş zərbə hərəkətli əl aləti. Hər hansı təhriklə (məsələn pnevmatika ilə) hərəkətə gətirilən metal süngü və ya tir. Təhrik hissəsinin zərbə hissəsinə ötürdüyü impuls nəticəsində, dəmir süngü emal olunan metariala dəlməklə və ya kəsməklə təsir edir.
Mexaniki ötürmə
Transmissiya — fırlanma momentini mühərrikdən nəqliyyat vasitəsinin təkərlərinə, torna dəzgahının patronuna ötürən və eyni zamanda gücün, sürətin dəyişdirilməsi üçün mexanizmlər toplusu. Transmissiyanın tərkibinə daxildirlər: Mufta Kardan valı Differensial Oynaqlı birləşmə Чобиток В. А., Данков Е. В., Брижинев Ю. Н. и др. Конструкция и расчет танков и БМП. Учебник.
Mexaniki çökmə yataq
Mexaniki çökmə yataq — tərkibində faydalı qazıntılar olan süxurların mexaniki aşınması və hissəciklərin su axınları ilə daşınıb sonradan çökməsi nəticəsində əmələ gələn ilkin çökmə yataq. Daşınma prosesində hissəciklərin formasından, ölçüsündən, sıxlığından, davamlılığından və daşıyıcı mühitin sürətindən asılı olaraq mexaniki diferensiasiya baş verir. Mexaniki çökmə yataq tikinti materialları (çaqıl, qum, gil) yataqları, nəcib və nadir metal, almaz, qiymətli daşlar, səpinti yataqlar, habelə köklü yataqların yuyularaq yenidən çökməsi nəticəsində yaranan fosforit, kaolinit, dəmir, manqan və b. filiz yataqları aiddir. Çökmə yataqlar Geologiya terminlərinin izahlı lüğəti. — Bakı: Nafta-Press, 2006. — Səhifələrin sayı: 679.
Opto-mexaniki siçan
Opto-mexaniki siçan (optomechanical mouse) – optik və mexaniki qurğuların kombinasiyasının köməyilə hərəkətinin istiqamət siqnallarına çevrildiyi siçan konstruksiyası. Optik hissədə işıq-diod və verici cütlükləri olur; mexaniki hissə cərəyan kəsici dəlikləri olan fırlanan təkərciklərdən ibarət olur. Siçan hərəkət etdikdə təkərcik dönür və işıq-diodlardan gələn işıq ya dəlikdən keçərək işıq vericisinə düşür, ya da təkərciyin şəffaf olmayan hissələri tərəfindən bloklanır (qarşısı alınır). İşığın bu dəyişiklikləri verici cütlüklər tərəfindən aşkarlanır və nisbi hərəkət siqnalları kimi interpretasiya olunur. Vericilər fazaca bir-birinə nəzərən azacıq yerini dəyişdiyindən hərəkətin istiqaməti hansı vericinin ilk olaraq indikatorla kontaktı bərpa etməsinə görə müəyyənləşir. Opto-mexaniki siçanda mexaniki hissələrin əvəzinə optik qurğular istifadə edildiyindən, o, çox az-az təmir olunur, ancaq onun işləməsi üçün xüsusi səth (örtük) tələb olunur. 1964-cü ildə ixtiraçı Duqlas Engelbart (Douglas Engelbart) tərəfindən ilk siçan qurğusu (mouse) yaradılmışdır. Bu qurğunun korpusu taxtadan düzəldilmişdi, daxili hissəsi isə bir-birinə perpendikulyar yerləşən, bir ox üzərində fırlanan iki dişli çarxdan ibarət idi. Opto-mexaniki siçanın iş mexanizmi: Siçan hərəkət etdikdə top dönür. Top X və Y silindirlərinə toxunaraq hərəkəti ötürür.
Mexaniki ticarət sistemi
Mexaniki ticarət sistemi (MTS) — birja və ya birjadankənar qiymətli kağızlar bazarlarında alqı-satqı zamanı əməliyyatların açılması, aparılması və bağlanması üçün tam rəsmiləşdirilmiş qaydalar toplusu. Əgər sistemin qaydalarında qeyri-səlis parametrlər varsa (məsələn: “kifayət qədər böyük şam”, “aydın ifadə olunan tendensiya” və s.), onda belə sistem mexaniki deyil. Mexanik ticarət sistemləri tez-tez avtomatik sistemlər (ATS) və ya ticarət robotları ilə eyniləşdirilir - treyderlərin fəaliyyətini tam və ya qismən avtomatlaşdırmaq üçün hazırlanmış proqramlar. Bununla belə, hər mexaniki sistem eyni zamanda avtomatik deyil: sistemdə rəsmiləşdirilməsinə baxmayaraq, proqramlaşdırıla bilməyən qaydalar ola bilər. Bundan əlavə, treyder mexaniki sistemdən istifadə edərək onun qaydalarına əl ilə riayət etməklə ticarət edə bilər ATS şəklində mexaniki sistemin tətbiqi vəziyyətində, avtomatlaşdırma səviyyəsi fərqli ola bilər — treyderə qərar qəbul etməkdə kömək etməkdən alqoritmik ticarət metodlarından istifadə edərək birjada sifarişlərin avtonom şəkildə yerləşdirilməsi və geri götürülməsinə qədər. Proqramın əlavə funksiyaları yerinə yetirməsi də mümkündür - təqdim edilmiş sifarişlərə nəzarət, əməliyyatların monitorinqi, qrafik və hesabatların təqdim edilməsi ilə ticarətin təhlili. Mexanik ticarət sistemini ilk təyin edənlərdən biri 1992-ci ildə N. C. Balsara, ardınca Tuşar S. Çande 1997-ci ildə “Beyond Technical Analysis” kitabında çıxış etmişdir. Mexanik ticarət sistemindən istifadə edən ən böyük fondlardan biri Ceyms Saymons tərəfindən təsis edilmiş və 100 milyard dollara yaxınlaşan aktivləri olan Renaissance Technologies-dir. М. Матвейченков. Лишние люди // Вокруг света.
"Mexaniki və üzvi həmrəylik."
Sosiologiyada " mexaniki həmrəylik " və " orqanik həmrəylik " [1] Émile Durkheim tərəfindən inkişaf etdirilən həmrəylik anlayışlarıdır. Durkheim , "The Division of Labour in Society" (1893) kitabinda cəmiyyətlərin inkişaf nəzəriyyəsinin bir hissəsi kimi "mexaniki" və "üzvi həmrəylik" ifadələrini təqdim etmişdir. Durkheimin sözlərinə görə, ictimai həmrəyliyin növləri mexaniki və üzvi cəmiyyətlər olan cəmiyyət növləri ilə əlaqəlidir. Mexaniki birliyini nümayiş etdirən bir cəmiyyətdə, onun birləşməsi və inteqrasiyası, eyni iş, təhsil və dini təlim və həyat tərzi ilə əlaqəli olan fərdlərin — homojenliyindən gəlir. Mexanika həmrəyliyi normal olaraq "ənənəvi" və kiçik miqyaslı cəmiyyətlərdə fəaliyyət göstərir. [2] Sadə cəmiyyətlərdə (məsələn, qəbilə), həmrəylik adətən ailə şəbəkələrinin qohumluq əlaqələrinə əsaslanır. Üzvi həmrəylik, işin ixtisaslaşmasından və insanlar arasındakı tamamlayıcılıqlardan yaranan bir-birinə olan bağlılığından gəlir — müasir və sənaye cəmiyyətlərində baş verən inkişaf. [2] Bu, daha inkişaf etmiş cəmiyyətlərdə bir-birinə olan asılılıqlara əsaslanan sosial birlikdir. Fərqli vəzifələri yerinə yetirərkən və müxtəlif dəyərlər və maraqlara sahib olsa da, cəmiyyətin sırası və çox həmrəyliyi insanlarin müəyyən vəzifələrini yerinə yetirmək üçün bir-birlərinə güvənməsindən asılıdır. Beləliklə, ictimai həmrəylik daha kompleks cəmiyyətlərdə onun tərkib hissələrinin bir-birindən asılı olması yolu ilə saxlanılır (məsələn, fermerlər fermerin ərzaq istehsal etməyə imkan verən traktoru istehsal edən zavod işçilərini qidalandırmaq üçün ərzaq istehsal edir).
Mexaniki və üzvi həmrəylik
Sosiologiyada " mexaniki həmrəylik " və " orqanik həmrəylik " [1] Émile Durkheim tərəfindən inkişaf etdirilən həmrəylik anlayışlarıdır. Durkheim , "The Division of Labour in Society" (1893) kitabinda cəmiyyətlərin inkişaf nəzəriyyəsinin bir hissəsi kimi "mexaniki" və "üzvi həmrəylik" ifadələrini təqdim etmişdir. Durkheimin sözlərinə görə, ictimai həmrəyliyin növləri mexaniki və üzvi cəmiyyətlər olan cəmiyyət növləri ilə əlaqəlidir. Mexaniki birliyini nümayiş etdirən bir cəmiyyətdə, onun birləşməsi və inteqrasiyası, eyni iş, təhsil və dini təlim və həyat tərzi ilə əlaqəli olan fərdlərin — homojenliyindən gəlir. Mexanika həmrəyliyi normal olaraq "ənənəvi" və kiçik miqyaslı cəmiyyətlərdə fəaliyyət göstərir. [2] Sadə cəmiyyətlərdə (məsələn, qəbilə), həmrəylik adətən ailə şəbəkələrinin qohumluq əlaqələrinə əsaslanır. Üzvi həmrəylik, işin ixtisaslaşmasından və insanlar arasındakı tamamlayıcılıqlardan yaranan bir-birinə olan bağlılığından gəlir — müasir və sənaye cəmiyyətlərində baş verən inkişaf. [2] Bu, daha inkişaf etmiş cəmiyyətlərdə bir-birinə olan asılılıqlara əsaslanan sosial birlikdir. Fərqli vəzifələri yerinə yetirərkən və müxtəlif dəyərlər və maraqlara sahib olsa da, cəmiyyətin sırası və çox həmrəyliyi insanlarin müəyyən vəzifələrini yerinə yetirmək üçün bir-birlərinə güvənməsindən asılıdır. Beləliklə, ictimai həmrəylik daha kompleks cəmiyyətlərdə onun tərkib hissələrinin bir-birindən asılı olması yolu ilə saxlanılır (məsələn, fermerlər fermerin ərzaq istehsal etməyə imkan verən traktoru istehsal edən zavod işçilərini qidalandırmaq üçün ərzaq istehsal edir).

Digər lüğətlərdə