Lüğətlərdə axtarış.

Axtarışın nəticələri

OBASTAN VİKİ
Atom Elektrik Stansiyası
Atom elektrik stansiyası — bir və ya daha çox nüvə reaktorunun yanacaq olaraq radioaktiv maddələri istifadə edərək elektrik enerjisi hasil etdiyi təsisat. Radioaktiv maddələr istifadə edildiyinə görə digər elektrik stansiyalarından fərqli olaraq AES-lərdə daha güclü təhlükəsizlik tədbirləri həyata keçirilir.
Buşehr atom elektrik stansiyası
Buşehr atom elektrik stansiyası, İranın Buşehr şəhərinin cənub-şərqinin 17 kilometrlığında (11 mil) Heleyle və Bəndərqah balıqçılıq kəndləri arasında Fars körfəzi boyunca yerləşir. Zavod üç tektonik plitələr qovşağında yerləşir.İranda və eyni zamanda Yaxın Şərqdə ilk Atom Elektrik Stansiyası olan Buşehrin inşaasına 1975-ci ildə Almaniyanın Siemens kompaniyasının Kraftwerk Union AG filialı tərəfindən başlayıb. Lakin 1979-cu ildə İranda İslam İnqilabı, daha sonra isə İraqla silahlı münaqişənin baş verməsi nəticəsində tikinti dayandırılır və müqavilə pozulur. 1995-cı ilin yanvarın 8-də Buşir AES-nin birinci enerji blokunun tikintisinin başa çatdırılması barədə Rusiya ilə müqavilə bağlanılır, 1998-ci ildə isə Atomstroyeksport dövlət şirkəti tərəfindən bütün obyektin tikintisinin açar təslimi barədə saziş imzalanır. == Sentyabr 2011 rəsmi açılış == Zavod 3 Sentyabr 2011 üzrə elektrik əlavə etməyi milli elektrik şəbəkəyə başlamış və rəsmi açılış 12 sentyabr keçirilmişdir. == Təhlükəsizlik == Rusiyanın dövlət nüvə enerji müəssisəsi ROSATOM illər uzunu təxirə salınan Buşir zavodununun tikintisini nəhayət bitirdikdən sonra iranlı işçilərə zavodu idarə etmək üçün təlimlər keçirlər. Onlar siniflərdə operator təlimləri keçirirlər. Bundan başqa onların bütün halları əhatə edən simulyatorları var. Bu simulyatorlar qərb standartlarına uyğun gəlir. Pilotların təlim keçdikləri aviasiya simulyatorları kimi, nüvə enerji operatorları da problemlər və gözlənilməz fövqəladə hallar zamanı gerçək həyatda təlafat və fəlakətə səbəb ola biləcək səhvlər etməmək üçün təlimlər keçirlər.
Metsamor Atom Elektrik Stansiyası
Metsamor Atom Elektrik Stansiyası (erm. Հայկական ատոմային էլեկտրակայան) və ya Ermənistan Atom Elektrik Stansiyası — Ermənistanın paytaxtı İrəvanın 36 km qərbində yerləşən Metsamor şəhərində yerləşən AES. Bu atom stansiyasının istehsal etdiyi enerji Ermənistanın elektrik ehtiyacının 40 faizindən çoxunu təşkil edir. AES İrəvandan təxminən 30 km cənubda, Metsamor şəhəri yaxınlığında yerləşir. Stansiya Türkiyə sərhəddindən 17.5 km, İran sərhəddindən 60 km, Azərbaycan sərhəddindən isə 75 km məsafədə yerləşir. == Tarixi == Ermənistan SSR-də Atom Elektrik Stansiyasının tikintisi barədə qərar SSRİ rəhbərliyi tərəfindən 1967-ci ildə qəbul olunub. Metsamor AES-in tikintisinə 1969-cu ildə başlanılıb, həmin ildə də Metsamor şəhərinin təməli atıldı. 1970-ci ildə Metsamor özünün ilk sakinlərini qəbul etdi, onların arasında Sovet İttifaqının müxtəlif guşələrindən gələn 32 millətin nümayəndələri vardı. 1976-ci ilin dekabrında isə AES istismara verilib. Hər biri 408 MV gücə sahib WWER-440 /230 tipli 2 yunitardan ibarətdir. Stansiya Ermənistanın paytaxtı İrəvandan 32 km, Qarsdan 100 km, İğdırdan isə 30 km uzaqlıqdadır.
Fukusima-1 Atom Elektrik Stansiyası
Martın 11-də Yaponiyada baş verən zəlzələdən sonra zədələnən "Fukusima-1" Atom Elektrik Stansiyasında partlayış olub. Partlayış nəticəsində nüvə reaktorunun bloklarından birinin çöl divarı dağılıb, ətrafda radiasiya fonu sürətlə artıb. Radiasiyanın səviyyəsi 20 dəfədən çox yüksəlib. Ətraf ərazilərdən bir neçə min adam evakuasiya olunub. Yaponiyanın baş naziri keçirdiyi mətbuat konfransında daha çox radiasiya sızması olacağı ilə bağlı xəbərdarlıq edib. O, "Fukusima Dayiçi" stansiyasından 30 km radiusda yaşayan adamları örtülü yerlərə sığınmağa çağırıb. BMT-nin Atom Enerjisi üzrə Agentliyi isə 2011-ci il martın 14-də bildirib ki, Yaponiya zədələnmiş atom stansiyasının zərərsizləşdirilməsi üçün onlardan yardım xahiş edib.Hal-hazırda söz gedən yerdə zərərsizləşdirmə işləri aparılır.Buna bənzər digər qəza Çernobıl qəzasıdır. Atom ətrafında olan hər şey atomlardan ibarətdir.
Atom
Atom (yunanca ἄτομος (ὕλη) átomos (hýle) - "bölünməz") — kimyəvi elementin, bu elementə aid xüsusiyyətlərini saxlayan ən kiçik zərrəciyi. Elmin inkişaf tarixi boyunca müxtəlif atom modelləri təklif olunmuşdur. İlk dəfə olaraq e.ə. V əsrdə Demokrit abstrakt şəkildə atom haqqında fikir söyləmişdir. Atom kimyəvi yolla bölünmür. Kimyəvi elementin xassələrini özündə saxlayan ən kiçik hissəcikdir. "+" yüklü nüvədən və "-" yüklü elektrondan təşkil olunmuş elektroneytral hissəcikdir. == Atom modelləri == Atom modelləri izolə olunmuş atomların quruluşunu əks etdirir. === Demokrit- Levkipp modeli === Demokrit hesab edirdi ki, istənilən əşyanın xarakteri – onun kütləsi, forması və s. onun atomlarınn xassələri ilə təyin olunur.
Elektrik
Elektrik (yunanca ἤλεκτρον ēlektron „kəhraba" deməkdir) — fiziki əsasında yüklənmiş mikroskopik hissəciklərin (elektron, ion, molekula və onların kompleksi) olduğu cismin və prosesin xassələri və dəyişilməsini izah edən anlayışdır. O sakit və hərkətdə olan elektrik yükünü, həmçinin elektrik və maqnit sahəsi ilə əlaqədar fenomenləri əhatə edir. Elektrik ilə elektrik enerjisi əldə edilir. Elektrik yükünün daşıyıcısı mənfi yüklənmiş elektronlar, ionlar və müsbət yüklənmiş proton və kationlardır. Eyni qütblü yüklər bir-birini itələyir, müxtəlif yüklülər isə cəlb edir. Elektrik yükləri elektrik sahəsinin, hərəkətli yüklər isə maqnit sahəsinin əsasını təşkil edir. Elektromaqnetik dalğalar elktromeqnetik sahənin həyacanlanmasıdır və yarandıqdan sonra yük daşıyıcılarından asılı olmayaraq hərkət edə bilir. Elektrik yüklərinin keçiricidə hərəkəti sərbəst elektronların nizamlanmış hərkətindən ibarətdir. Bərk cisimlər keçiricilər, yarımkeçiricilər və dielektriklərə bölünürlər. == Tarixi == Elektrik cərəyanı hələ bizim eradan təxminən 600 il əvvəl, yunanlara məlum olmuşdur.
Elektrik Gitara
Elektrogitara və ya Elektrikli gitara — polad simlərin titrəyişlərini elektrik siqnallarına çevirən və onu səsgücləndiriciyə ötürməklə səslər yaradan gitara növü. Elektrogitara ilk dəfə olaraq cazda istifadə olunmuş, ondan həm də pop musiqisində, rok-n-rol, kantri, blyuz, embiyent, nyu-eyc və hətta çağdaş klassik musiqidə də geniş istifadə olunur.
Elektrik avtomobili
Elektrik avtomobili — elektrik enerjisi ilə işləyən bir və ya bir neçə mühərrikdən ibarət avtomobil. İlk praktiki elektrik avtomobili 1880-ci illərdə istehsal edilmişdir. Elektrik avtomobilləri 19-cu əsrin axırları və 20-ci əsrin əvvəlləri populyar olsa da, daxili yanma mühərriklərinin inkişafı və kütləvi ucuz benzin istehsalı elektrik avtomobillərinin istifadəsinin azalmasına səbəb olmuşdur. 2008-ci ildən etibarən batareyaların inkişafı, neft qiymətlərinin daha da bahalaşma qayğıları və havaya buraxılan zəhərli qazların azaldılması istəyi elektrik avtomobillərinin istehsalında yeni bir dalğa yaratmışdır. Çoxlu ölkə və yerli hökumətlər elektrik maşınlarının kütləviləşməsi üçün güzəştli kreditlər, vergi güzəştləri və s tətbiq etməyə başlamışdır. Daxili yanma mühərrikləri ilə işləyən avtomobillərlə müqayisədə elektrik avtobilləri daha az səs çıxarır. Çox ölkədə neft idxal edildiyi üçün elektrik avtomobilləri neft idxalının azaldılmasına gətirib çıxaracaq. Elektrik avtomobillərinin əsas problemlərindən biri yenidən elektrik qidalanmasının çox uzun müddət çəkməsidir. batareyaların baha olması, elektrik avtomobillərinin digər avtomobillərdən baha olmasına gətirib çıxarır, amma hal-hazırda batareya qiymətlərində eniş müşahidə olunur. Bundan başqa sürücülər növbəti mənzilə çatana qədər batareyanın tamami ilə bitməsindən qorxurlar.
Elektrik boşalması
Elektrik boşalması — Dünyada ilk dəfə rus alimləri Mixail Lomonosov (1711‐1765) və Qeorq Vilhelm Rixman (1711‐1753) və onlardan asılı olmadan amerikan alimi Frankel havada elektrik boşalmasını tədqiq etmişlər. 1743‐cü ildə M.V.Lomonosov «Allahın böyüklüyü haqqında axşam düşüncələri» əsərində ildırımın və şimal qütb parıltısının elektrik təbiətli olması ideyasını irəli sürmüşdür. Bir qədər sonra (1752‐ci ildə) Frankel və Lomonosov ildırım maşınının köməyi ilə göstərmişlər ki, ildırım və şimşək – havada güclü elektrik boşalmasıdır. Bununla yanaşı aşkar edilmişdir ki, hətta ildırım olmadıqda da havada elektrik boşalması baş verir. İldırım maşını sadə quruluşa malik olub, yaşayış evində qurulmuş Leyden bankalarından ibarət idi. Bankalardan birinin qapağı naqil vasitəsi ilə açıq havada yerləşdirilmiş metal darağa və ya dəmir milə birləşdirilirdi. Sankt-Peterburq tibbi‐cərrahiyyə akademiyasının akademiki Vasili Vladimiroviç Petrov (1761‐1834) M.V.Lomonosovun elmi işlərini inkişaf etdirərək, 1802‐ci ildə ilk dəfə olaraq (ingilis fiziki Devidən bir neçə il əvvəl) havada iki kömür elektrod arasında qövs boşalması hadisəsini müşahidə etmiş və göstərmişdir ki, havadan elektrik cərəyanı keçərkən elektrik boşalması baş verir. V.V.Petrov öz kəşfini belə təsvir edirdi: «Əgər şüşə masanın üzərinə 2‐3 qırıntı ağac kömürü qoyub, onları naqillər vasitəsi ilə güclü elektrik mənbəyinə qoşsaq və bir‐birinə yaxınlaşdırsaq, həmin kömür qırıntıları arasında parlaq (gözqamaşdırıcı) ağ işıqlanma (alov) yaranacaq və bu alovun təsirindən kömürlər yanacaq». V.V.Petrovun elmi işləri rus dilində dərc olduğuna görə, onlar xarici ölkə alimləri üçün əlçatmaz idi. Rusiyada həmin dövrdə elmi işlərə bir o qədər maraq göstərilmədiyindən həmin işlər tezliklə unudulmuşdu və məhz bu səbəbdən də, sonralar qövs boşalmasının kəşfi ingilis alimi Devinin adına yazılmışdır.
Elektrik yarımstansiyası
Yarımstansiya — elektrik enerjisinin istehsalı, ötürülməsi və paylanması sisteminin bir hissəsidir. Yarımstansiya gərginliyi yüksəkdən alçağa və ya əksinə çevirir. Elektrik enerjisinin istehsal olunduğu stansiya və istehlakçı arasında enerji müxtəlif gərginlik səviyyələrində bir neçə yarımstansiyaya daxil ola bilər. Yarımstansiyada yüksək gərginlik və aşağı gərginlikli paylayıcı arasında gərginlik səviyyələrinin dəyişdirilməsi üçün transformator ola bilər. Ümumiyyətlə yarımstansiyalar uzaq məsafədən nəzarət və idarəetmə üçün SCADA sisteminə malikdirlər.
Elektrik zədələnmələri
Elektrik zədələnmələri — müxtəlif gərginlikli elektrik cərəyanı ilə kontakt nəticəsində baş verən yanıqlardır;Sadə şəkildə desək, elektrik zədələnmələri elektrik cərəyanın bədənin toxumaları boyunca yayılması nəticəsində əmələ gələn istiliyin təsirindən baş verən yanıqlardır. Elektrik enerjisi adətən dərin yanıqlara səbəb olur.Elektrik zədələnmələrinin səbəbi insanın elektrik enerjisi mənbəyi ilə birbaşa, yaxud dolayısilə əlaqədə olmasıdır. Düz (birbaşa) elektrik zədələnmələr — elektrik cərəyanının insan bədəninə elektrik dövriyəsini açarkən birbaşa keçməsi nəticəsində baş verir. Vasitəli (dolayısilə) elektrik zədələnmələr — volt qövsünün təsiri zamanı olur.Müəyyən gərginlikli və güclü elektrik cərəyanının təsiri nəticəsində elektrik zədə əmələ gələrək həm yerli, həm də mərkəzi sinir, tənəffüs, ürək-damar sistemlərində çox güclü, dərin funksional pozulmalar törədir.Zədələnmələrin ağırlığı və nəticəsi təkcə elektrik cərəyanının fiziki parametrlərindən başqa cərəyan keçrici əşya ilə kontaktda olan dərinin müqavimətindən asılıdır. Quru dərinin elektrik müqaviməti 100–2000 dəfə yaş dərinin müqavimətindən yüksəkdir və bu səbəbdən eyni gərginlikli elektrik cərəyanı birinci halda qorxulu zədələnməyə səbəb olmur, əksinə ikinci halda isə ölümlə nəticələnə bilir.Elektrik cərəyanının gərginliyi 500 V–dan çox olduqda dərinin müqavimətinin heç bir mənası olmayıb, təmas yerində bioloji toxumaların "deşilməsi" baş verərək elektrik cərəyanı işarələri, izləri əmələ gətirir.Çox vaxt cərəyanın təsiri nəticəsində orqanizmdə əmələ gələn dəyişikliklər terminal (bioloji ölümə yaxın) vəziyyətə gətirib çıxarır. == Elektrik zədələnmələrin ağırlıq dərəcələrinə görə təsnifatı == Elektrik zədələnmələrdə 4 ağırlıq dərəcəsi ayırd edilir:I dərəcə — təkcə elektrik cərəyanının təsiri anında şüur itməməsi fonunda skelet əzələlərinin qıcolma yığılmaları;II dərəcə — cərəyanın təsiri kəsildikdən sonra skelet əzələlərinin qıcolma yığılmalarının davam etməsi, huşun itməsi, tənəffüs və ürək fəaliyyətinin pozulması;III dərəcə — qıcolmalar olur, şüur itir, tənəffüs ritminin kobud pozulmaları qeyd olunur, nəbz yalnız yuxarı arteriyalarda izlənib, mil–bilək nahiyəsində isə itir;IV dərəcə — kliniki ölüm ilə nəticələnir.Elektrik cərəyanının yüngül təsiri zədələnmişin ümumi vəziyyətini dəyişməyə də bilər. Zədələnmişin müayinəsi zamanı təyin edilən qənaətbəxş vəziyyəti, sonrakı vəziyyətin ağırlaşmasına zəmin yaratmır.Elektrik cərəyanının daha ağır zədələnmələrində mərkəzi sinir sisteminin funksiyalarının pozulmaları baş verir. Zədələnmiş tormozlanma vəziyyətində olur, lakin bəzən nitq və hərəki oyanma mərhələləri baş verir. Huşun dərin tormozlanması və xarici qıcıqlara cavab reaksiyalarının olmaması vəziyyəti əmələ gəlir (komatoz vəziyyət).Ağır elektrik zədələnmələrdə qan dövranının və tənəffüsün pozulmaları ön plana çıxır. Səs tellərinin spastik yığılması, skelet əzələlərinin davamlı spazmı fonunda tənəffüsün dayanması inkişaf edir.
Elektrik çaydanı
İlk elektrik qızdırıcı cihazı çaydanın alt hissəsində yerləşdirilirdi. Su ilə qızdırıcı arasında metal təbəqə olduğundan o, çox gec qaynayırdı. 1923-cü ildə Artur Larqc xüsusi mis borudan ibarət qızdırıcı cihazı çaydanın içərsində yerləşdirdi. Bu çaydanda su çox sürətlə qızırdı.
Adron atom
Adron atomu – mənfi yüklənmiş adronlu (π- -, κ-- mezonlar, antiproton və s.) mezoatom. Adron atomları-kulon cazibəsi hesabına müsbət yüklənmiş nüvənin mənfi adronu tutub saxlayan atomabənzər sistemdir. Pion (π-), kaon (κ-), antiproton və hiperon atomları müşahidə olunmuşdur. A.a.-nın öyrənilməsi həm adron və həm də nüvə (adronun kütləsi və maqnit momenti, nüvədə maddənin paylanması, adron və nüvənin polyarlaşması), həmçinin onların qarşılıqlı təsiri (nüvənin adronu səpməsi və udması) haqqında məlumat verir. A.a. maddədə mənfi adronun yavaşıması ilə yaranır. Adron atom tərəfindən tutulur və baş kvant ədədi n›(m\m4)½ olan yüksək həyəcanlanmış hal yaranır, adronun kütləsi, elektronun kütləsidir. Atomun həyəcanlanması çoxsaylı, ardıcıl oje-keçidlər və adronun rentgen şüalanması ilə müşayiət olunan bir səviyyədən digərinə elektrik dipol keçidləri hesabına aradan qalxır. Bu zaman dairəvi orbitlərin məskunlaşması üstünlük təşkil edir. Adron halı n-nin kiçik qiymətlərinə çatanda güclü qarşılıqlı təsir effektləri əhəmiyyətli olur, bu isə adronun nüvə tərəfindən tutulmasına səbəb olur.Rentgen şüalanması ilə müşayiət olunan adron keçidinin baş verdiyi atom səviyyələri əsasən atomlardakı adi elektron səviyyələri təbiətinə malikdirlər.
Atom (dəqiqləşdirmə)
Atom — kimyəvi elementin, bu elementə aid xüsusiyyətlərini saxlayan. Atom (format) — bir-birilə əlaqəli iki veb-texnologiyanın ümumi adı. Atom (çip üzərində sistem) — çip üzərində sistem. Atom (mətn redaktoru) — mətn redaktoru.
Atom (format)
Atom — bir-birilə əlaqəli iki veb-texnologiyanın ümumi adı: veb-saytlarda resursların və onların nəşri üçün protokolun təsviri üçün format. == Sindikasiya formatı == Atom formatının sindikasiyası XML formatına əsaslanmışdır və veb-resurs dəstlərini təsvir etməyə imkan verir (məsələn, xəbər lentləri, bloqdakı məqalələr). Bu formatdan sonra RSS formatıda bu funksiyaları daha təkmil yerinə yetirir. Format RFC 4287-də təsvir edilmişdir və indi bir çox layihələrdə Google şirkəti tərəfindən fəal dəstəklənir.
Atom Bombası
Nüvə silahı (atom silahı) — atom nüvəsinin parçalanma reaksiyası nəticəsində nüvədaxili enerjinin (atom enerjisinin) bir hissəsinin ayrılması hesabına çox qüvvətli partlayış yaradan aviasiya bombasıdır. Nüvə reaksiyaları (bölünmə və ya sintez reaksiyaları, yaxud hər ikisi birlikdə) nəticəsində qapalı həcmdə böyük miqdarda ayrılan nüvədaxili enerjidən baş verən partlayış təsirli silahların ümumi adıdır. Bu reaksiyalarda maddənin kütlə vahidindən ayrılan enerji adi partlayıcı maddədəkinə (trotildəkinə) nisbətən 20—80 mln. dəfə artıq olur. Son dərəcə sürətlə və külli miqdarda ayrılan enerji nüvə partlayışı kimi meydana çıxır və öz gücünə və zədələyici amillərinin (zərbə dalğası, işıq şüalanması, nüfuzedici radiasiya, radioaktiv zəhərlənmə və elektromaqnit impulsu) xarakterinə görə adi döyüş sursatlarının partlayışından fərqlənir. == İlk atom bombaları haqqında == İlk atom bombası İkinci dünya müharibəsinin sonunda ABŞ-də hazırlanmışdır. Atom bombası havada (istənilən hündürlükdə, yer səthində və su altında, lazımı dərinlikdə) partladıla bilər; 1945-ci ilin iyulunda ABŞ atom bombasını sınaqdan çıxardıqdan sonra Yaponiyanın Xirosima (avqustun 6-da) və Naqasaki (avqustun 9-da) şəhərlərinə partlayış gücü 20 min ton trotil partlayışına ekvivalent olan 2 bomba atmışdır. Xirosimada 200 minə yaxın adam ölmüş və itkin düşmüş, sonralar şüa xəstəliyindən və yaralanmadan daha 35 min adam ölmüşdür. == Müasir nüvə silahları == Müasir nüvə silahı kompleksi (raket-nüvə silahı) müxtəlif növ nüvə döyüş sursatından, onları hədəfə çatdıran vasitələrdən və idarəetmə vasitələrindən ibarətdir. Nüvə enerjisinin alınması üsuluna görə, ağır kimyəvi elementlərin (235U, 239Pu) atom nüvələrinin zəvcirvari parçalanması reaksiyasına əsaslanan nüvə bombaları (əvvəllər «atom bombası» adlandırılırdı) və yüngül elementlərin (məs., hidrogen izotoplarının) atom nüvələrinin siitez reaksiyasına əsaslanan istilik-nüvə (hidrogen) bombaları var.
Atom Qarışqa
Atom qarışqa — 1965-ci ildə Hanna-Barbera tərəfindən yaradılan cizgi film obrazı. Cizgi film 1990-cı və 2000-ci illərdə yenidən "Cartoon Network" və "Boomerang"da yayımlanmışdır. == Bioqrafiya == Atom qarışqa kompüter və idman avadanlığı kimi əşyalarını yerləşdirdiyi yuvasında yaşayan super qəhrəman qarışqadır. Əsas qabiliyyətləri uçmaq, süper sürət, inanılmaz güc və dözümlülükdür. "Yuxarıya, Atom Qarışqa" onun şüarıdır. O, ona tapşırıqlar verən polis rəisiylə tez-tez əlaqə saxlayır. Başlanğıcda Hovard Morris tərəfindən, daha sonrakı bölümlərdə isə Don Messik tərəfindən səsləndirilmişdir.Atom Qarışqanın bəzi missiyaları Betmenin missiyalarını parodiya edir. Polislər əksər polis işlərini tez-tez Atom Qarışqaya həvalə etdiklərindən izləyicilərə bacarıqsız və yetərsiz olaraq təqdim olunurlar. Atom qarışqa, macəralarında dəli professor Von Qimmik, Vəhşi Birə (o da Don Messik tərəfindən səsləndirilmişdir) və s. kimi təkrarlanan mənfi personajlarla mübarizə aparır.
Atom fizikası
Atom fizikası – atomların quruluş və xassələrini, elektron örtüyünün quruluşunu, və onun dəyişməsi zamanı baş verən fiziki və kimyəvi prosesləri öyrənən fizikanın əsas bölmələrindən biri. Atom fizikasının başlıca vəzifəsi atomun enerji səviyyəsinin düzgün xarakterini, onların incə və ifrat (hədsiz dərəcədə) incə quruluşunu, xarici elektrik və maqnit sahələrində enerji səviyyələrinin parçalanması yaxud hər hansı dəyişməsini öyrənməkdən, hərəkət miqdarı momentinin ala biləcəyi qiymətləri və həyacanlanmış hallarda elektronların orta yaşama müddətini tapmaqdan ibarətdir. Buna görə də müasir atom fizikasına atomun quruluşunu öyrənən nəzəriyyələr, kimyəvi birləşmələrdə və kristallarda atomların qarşılıqlı təsirini, eləcədə atomun optik və rentgen şüalanma spektrlərini öyrənən fizika bölmələri də daxildir. Atom fizikası XIX əsrin sonu, XX əsrin əvvəllərində yaranmışdır. Lakin atomun varlığı və onun bölünməz olması haqqında ilk fikirlər Demokrit və Epikürə məxsusdur. XVII əsrdə fransız filosofu P. Qassendi və ingilis kimyaçısı Robert Boyl bu fikri yenidən söyləmişlər. Kimyanın inkişafı ilə əlaqədar C. Dalton atomlarda həndəsi nisbətlər qanunu kəşf etdi. A. Avoqadro və S. Kannitsaro atomla molekul arasındakı fərqləri tapmışlar. XIX əsrin sonlarında atomların optik xassələrinin öyrənilməsinə başlanması ilə atom fizikasının əsası qoyuldu. Hər bir atomun xarakterik optik spektrə malik olması məlum olduqdan sonra onların qruplaşdırmağın mümkünlüyü başa düşüldü.
Atom gəmisi
Atom gəmisi - nüvə-güc qurğusu ilə işləyən gəmilərin ümumi adı. Müxtəlif təyinatlı mülki və hərbi Atom gəmiləri (buzqıran gəmi, tanker, sualtı gəmi, aviasiya gəmisi və s.) olur. Güc qurğuları üzvi yanacaqla işləyən gəmilər ilə müqayisədə atom gəmiləri əlahiddə üzmə və yüksək gediş sürətini uzun müddət saxlama qabiliyyətinə malikdir. İlk dəfə 1950-ci ildə sualtı gəmini nüvə energetika qurğusu ilə təchiz etməklə yüksək taktiki-texniki göstəricilərə (suyun altında 80 km/saat sürətlə hərəkət, 1000 m-ədək dalma dərinliyi, suyun, o cümlədən buzun altında limanlara çıxmadan uzaq ölkələrə üzmə qabiliyyəti) nail olundu. Güc qurğusuna istilik neytronları, yaxud cəld neytronlarla işləyən nüvə reaktoru, reaktorda hasil olunan istiliyi mexaniki və ya elektrik enerjisinə çevirən buxar, yaxud qaz turbinli enerji qurğusu daxildir. Avar vintləri turbinlə, yaxud da elektrik mühərriki ilə hərəkətə gətirilir. Atom gəmisinin nüvə-energetika qurğusu adi atom-elektrik stansiyası kimi bir, iki və üç konturlu istilik sxemi ilə işləyə bilər. İstilikdaşıyıcı və işlək cism kimi su, su buxarı, qaz, maye metallar və üzvi maddələr tətbiq edilir. Nüvə-güc qurğusu ilə buzqıran gəmilər, yük, yük-sərnişin gəmiləri, konteyner daşıyan gəmilər, sualtı gəmilər, yedək və elmi tədqiqat gəmiləri təchiz olunur. == Mənbə == Azərbaycan Milli Ensiklopediyası (25 cilddə).
Atom kütləsi
Atom kütləsi - bir atomun kütləsi olub, atom kütlə vahidi (a.k.v.) ilə müəyyən olunur. Hal-hazırda atom kütlə vahidi ən geniş yayılmış izotop olan karbonun neytral atomunun kütləsinin 1/12-i qəbul edilir. Buna görə də, bu izotopun atom kütləsi təyinata görə düz 12 a.k.v.-nə bərabərdir. İzotopun atom kütləsi ilə onun kütlə ədədi arasındakı fərqə izafi kütlə deyilir. Bu fərq həm müsbət, həm də mənfi ola bilər. Onun yaranma səbəbi nüvə ilə proton və neytronlar arasında əlaqə enerjisinin qeyri xətti olmasında, həmçinin proton və neytronun kütlələri arasındak fərqdədir. Karbon atomunun etalon seçilməsinin əsas səbəbi onun 12C izotopunun 98,9% təşkil etməsidir ki, bu isə demək olar ki, götürülmüş nümunədə bütün Karbon atomlarının eyni sayda nuklonlardan təşkil olunması deməkdir. Kimyəvi elementin atom kütləsi (eləcə də "orta atom kütləsi", "standart atom kütləsi") verilmiş kimyəvi elementin təbiətdə mövcud olan bütün izotoplarının, onların yerdə və atmosferdə yayılma xarakterini nəzərə alaraq orta məxrəcə gətirilmiş kütləsidir. Mendeleyev cədvəlindədə bu kütlələr göstərilmişdir. Kimyəvi elementin nisbi atom kütləsi, onun təbii izotoplarının orta atom kütləsinin a.k.v-yə olan nisbəti ilə müəyyən olunur.
Atom nüvəsi
Atom nüvəsi – onun əsas kütləsinin və strukturunun cəmləşdiyi atomun mərkəzi hissəsi olub, atomun aid olduğu kimyəvi elementi təyin edir. Atom nüvəsi haqqında bilik radioaktivliyin, nüvə parçalanmasının başa düşülməsi üçün əhəmiyyətlidir. == Ümumi məlumat == Atomun nüvəsi bir femtometr ölçüsündədir, bu atomun ölçüsündən 100 dəfə kiçikdir. Nüvənin çəkisi atoma daxil olan elektronların çəkilərindən 4000 dəfə böyükdür və bu ona daxil olan zərrəciklərin sayından və enerjisindən kəskin asılıdır. Atom nüvəsi nüvə fizikasında öyrənilir. Atom nüvəsi nukleonlar – müsbət yüklənmiş protonlar və neytral neytronlardan ibarətdir. Bu hissəciklər bir-biri ilə möhkəm əlaqədədirlər. Nüvədəki protonların sayına (Z) onun atom nömrəsi deyilir. Bu elementin dövrü cədvəldə sıra nömrəsinə uyğun gəlir. Nüvədəki protonların sayı neytral atomun üz qatının strukturunu və bununla uyğun elementin kimyəvi xassələrini təyin edir.
Atom saatı
Atom saatı - zamanın ölçülməsi üçün istifadə edilən elektron cihaz. Bu saat Atom rezonansı əsasında işləyir. Atom saatının 3 mln il müddətinə xətası 1 saniyə ola bilər. Radionaviqasiyada, vaxtın astronomik ölçülməsində və fiziki hesablamalarda tezlik etalonu kimi istifadə olunur. Atomun 1 saniyə içərisindəki fırlanmasına bərabərdir və maxsimim soyuq şəraitdə laser vasitəsilə ölçülür. Hazırda atom qol saatı üzərində çalışırlar. Dünyanın vaxt ölçüsünün Big-Ben (İngiltərə) vasitəsilə ölçüldüyü düşünülsə də, əslində Amerikadakı atom saatı ilə ölkələrarası saat qurşağı fərqi ilə ölçülür.
Atom spektrləri
Atom spektrləri— əgər günəş işığını və ya adi lampa işığını prizmadan keçirərək ekrana yönəltsək, onun üzərində müxətlif rəngli işıq zolaqları yaranacaq. Bu rənglərin hər biri müəyyən konkret dalğa uzunluğuna malikdir. İşığın bu cür spektrlərə ayrılmasına kəsilməz spektr deyilir. Lakin əgər işıq mənbəyi kimi içərisinə qaz halında müəyyən bir element doldurulmuş qaz boşalması borusu istifadə olunarsa, onda qara fonda müxtəlif rəngli xəttlərdən ibarət spektr yaranacaq. Bu spektr atomun buraxma spektri (atom emission spektr) və ya xətti spektr adlanır. Buraxma spektrlərini istənilən maddə üçün almaq mümkündür. Bunun üçün onu hər hansı bir yolla (ondan elektrik cərəyanı buraxmaqla və ya alovda qızdırmaqla) həyəcanlandırmaq lazımdır. Atom spektrləri işıq spektrinin görünən hissəsindən ultrabənövşəyi hissəsinə qədər olan aralığı ehtiva edir. Hər bir maddənin özünəməxsus atom spektri mövcuddur. Məsələn, əgər natrium və onun birləşmələrini alova tutsaq, onda 590 nm dalğa uzunluğuna malik işıq şüası buraxılır və alov sarı rəngə boyanır.
Atom vaxtı
Atom vaxtı-Yer geoidində vaxtın düzgün keçidinə əsaslanan yüksək dəqiqlikli zaman standartıdır. Bu Yerli vaxtın prinsipal reallaşmasıdır(dövrü zolaq sabiti istisna olmaqla). Eyni zamanda bu vaxt bütün Yer səthi üzərində Ümumdünya vaxtı üçün əsasdır. == Kvars saatı == Çoxsaylı müşahidələrlə müəyyən olunmuşdur ki, Yerin öz oxu ətrafında fırlanması bərabərsürətli deyil. Bu səbəbdən orta Günəş vaxtı da bərabərsürətlə axmır. Bəzi astronomik məsələlərin həlli üçün isə yüksək dəqiqliklə bərabərsürətlə axan vaxt sistemi tələb olunur. Bu məqsədlə kvars saatlarından istifadə olunur. Bu saatlarda kvars lövhə yüksək gərginlikli dəyişən cərəyanla sabit yüksək tezliklə rəqs etdirilir. Sonra xüsusi qurğu ilə yüksək tezlikli rəqslər kiçik tezlikli sabit rəqslərə çevrilir və bu rəqslər saatın əqrəbinə ötürülərək saniyə impusları yaradır. Kvars saatları ilə vaxtı 10−6 saniyə dəqiqliklə ölçmək olur.
Atom orbitalı
Atom orbitalı (elektron orbitalı) — verilmiş atom üçün Şrödinger tənliyinin həlli ilə alınan bir elektron dalğa funksiyası ψ {\displaystyle \psi } ; əsas orbital və maqnit - kvant m {\displaystyle m} ədədləri ilə verilir. n {\displaystyle n} əsas kvant ədədinin eyni dəyərinə malik atom orbitalları dəsti bir elektron qabığını təşkil edir. Hər bir kimyəvi elementin atomu bütün orbitalların tam dəstinə malikdir. Orbitallar elektronun üzərində olub-olmamasından asılı olmayaraq mövcuddur, onların elektronlarla doldurulması seriya nömrəsi, yəni nüvənin yükü və müvafiq olaraq elektronların sayı artdıqca baş verir.
Elektrik cərəyanı
Elektrik cərəyanı – elektronların və ya ionların materialda və ya vakuumda nizamlanmış hərəkəti. Sükunət halındakı istənilən yüklü zərrəciyi hərəkətə gətirmək olar. Bu zaman Lorens və ya Kulon qüvvələrinin təsirindən istifadə olunur. Elektrik cərəyanı – yüklü hissəciklərin nizamlı hərəkətinə deyilir. Cərəyan şiddəti - ədədi qiymətcə d t {\displaystyle dt} müddətində naqilin en kəsiyindən keçən d q {\displaystyle dq} yükünün bu yükün keçmə müddətinə olan nisbətinə bərabərdir: I = d q d t {\displaystyle I={dq \over dt}} Onda xüsusi halda sabit cərəyan ( I = c o n s t {\displaystyle I=const} ) üçün alarıq: I = q t {\displaystyle I={q \over t}} Elektrik yükü vahidi – cərəyan şiddəti 1 A olan naqilin en kəsiyindən 1saniyədə keçən yük götürülür və fransız fiziki Kulonun şərəfinə 1 Kulon (1Kl) adlandırılır. Yəni, elektrik yükü vahidi törəmə vahiddir. 1 Kl = 1 A·san. Cərəyan şiddəti nəzəri olaraq I = q n v S {\displaystyle I=qnvS} düsturu ilə də hesablanır. Burada, q {\displaystyle q} - zərrəciyin yükü, n {\displaystyle n} - konsentrasiyası, v {\displaystyle v} - nizamlı hərəkət sürəti, S {\displaystyle S} isə naqilin en kəsiyinin sahəsidir. Ampermetr – cərəyan şiddətini ölçən cihazdır.
Elektrik dövrəsi
Elektrik dövrəsi — texnoloji prosesdə maşın və mexanizmləri işlətmək və idarə etmək üçün qurulan elektromexaniki sxem. Mühərrik nəzarətçisi elektrik mühərrikinin işini əvvəlcədən müəyyən edilmiş şəkildə əlaqələndirə bilən bir cihaz və ya qurğular qrupudur. Mühərrik nəzarətçisinə mühərriki işə salmaq və dayandırmaq, irəli və ya geri fırlanma seçmək, sürəti seçmək və tənzimləmək, fırlanma anı tənzimləmək və ya məhdudlaşdırmaq, həmçinin həddindən artıq yüklənmələrdən və elektrik xətalarından qorumaq üçün əl və ya avtomatik vasitə daxil ola bilər. Mühərrik tənzimləyiciləri mühərrikin sürətini və istiqamətini tənzimləmək üçün elektromexaniki keçiddən və ya güc elektron cihazlarından istifadə edə bilər. Mühərrik tənzimləyiciləri həm birbaşa cərəyan, həm də alternativ cərəyan mühərrikləri ilə istifadə olunur. Nəzarətçi mühərriki elektrik enerjisi mənbəyinə qoşmaq üçün vasitələrdən ibarətdir və həmçinin motor üçün həddindən artıq yükdən qorunma və motor və naqillər üçün həddindən artıq cərəyandan qorunma da daxil ola bilər. Mühərrik nəzarətçisi həmçinin motorun sahə dövrəsini izləyə və ya aşağı təchizatı gərginliyi, yanlış polarite və ya yanlış faza ardıcıllığı və ya yüksək mühərrik temperaturu kimi şərtləri aşkarlaya bilər. Bəzi motor tənzimləyiciləri başlanğıc başlanğıc cərəyanını məhdudlaşdırır, bu da motorun özünü sürətləndirməsinə və mexaniki yükü birbaşa birləşmədən daha yavaş birləşdirməsinə imkan verir. Mühərrik tənzimləyiciləri əl ilə ola bilər və operatordan yükü sürətləndirmək üçün addımlar arasında başlanğıc keçidinin ardıcıllığını tələb edir və ya mühərriki sürətləndirmək üçün daxili taymerlər və ya cari sensorlardan istifadə edərək tam avtomatik ola bilər. Bəzi motor kontrollerləri də elektrik mühərrikinin sürətini tənzimləməyə imkan verir.
Elektrik gərginliyi
Elektrik gərginliyi — elektrik sahәsinin bir nöqtәsindәn digәrinә vahid müsbәt yükün yerdәyişmәsi zamanı әdәdi qiymәtcә görülәn işә bәrabәr olan kәmiyyәt. Aşağıdakı düsturla hesablanır: U = A q {\displaystyle U={A \over q}} Burada q {\displaystyle q} - elektrik yükü, A {\displaystyle A} - elektrik yükünü dövrənin ixtiyari iki nöqtəsi arasında hərəkət etdirmək üçün elektrik qüvvəsinin gördüyü işdir. Potensiallı elektrik sahәsindә (elektrostatik sahәdә) bu iş yükün getdiyi yolun formasından asılı deyil. Bu halda iki nöqtә arasındakı elektrik gərginliyi (vә ya sadәcә gәrginlik) onların arasındakı potensiallar fәrqi ilә üst-üstә düşür. Әgәr sahә qeyri-potensiallı olarsa, onda gərginlik yükün nöqtәlәr arasında getdiyi yolun formasından asılı olur. Kәnar qüvvәlәr adlanan qeyri-potensiallı qüvvәlәr istәnilәn sabit cәrәyan mәnbәyinin daxilindә tәsir göstәrmәk imkanına malikdir. Cәrәyan mәnbәyinin sıxaclarındakı gәrginlik vahid müsbәt yükün mәnbәdәn kәnarda yerlәşәn yol boyunca yerdәyişmәsi zamanı elektrik cәrәyanının gördüyü işlә ölçülür; bu halda gərginlik mәnbәnin sıxaclarındakı potensiallar fәrqinә bәrabәr olub Om qanunu ilә tәyin edilir: U = ε − I r {\displaystyle U={\varepsilon }-{Ir}} burada I {\displaystyle I} – cәrәyan şiddәti, r {\displaystyle r} – naqilin daxili müqavimәti, R {\displaystyle R} – dövrәnin xarici müqavimәti, ε {\displaystyle \varepsilon } isә mәnbәnin elektrik hәrәkәt qüvvәsidir (e.h.q). Açıq dövrәdә ( I {\displaystyle I} = 0 {\displaystyle =0} ) gәrginlik mәnbәnin e.h.q.-nә bәrabәrdir. Ona görә dә dövrә açıq olduğu zaman mәnbәnin e.h.q.-ni çox vaxt onun sıxaclarındakı gərginlik kimi tәyin edirlәr. Dәyişәn cәrәyan halında gərginlik adәtәn tәsiredici (effektiv), yәni dövr әrzindәki orta kvadratik qiymәtlә tәyin olunur.
Elektrik induksiyası
Elektrik induksiyası — elektrik sahәsini xarakterizә edәn vektor kәmiyyәt; müxtәlif tәbiәtli iki vektorun cәminә bәrabәrdir: elektrik sahәsinin intensivliyi ( E {\displaystyle E} ) vә mühitin polyarlaşması ( P {\displaystyle P} ). Qauss vahidlәr sistemindә D = E + 4 π P {\displaystyle \mathbf {D} =\mathbf {E} +4\pi \mathbf {P} } BS-dә D = ε 0 E + P {\displaystyle \mathbf {D} =\varepsilon _{0}\mathbf {E} +\mathbf {P} } burada ε 0 {\displaystyle \varepsilon _{0}} – elektrik sabiti vә ya vakuumun dielektrik nüfuzluğu adlanan ölçülü konstantdır. Seqnetoelektrik xassәlәrә malik olmayan izotrop mühitdә zәif sahәlәrdә polyarlaşma vektoru sahәnin intensivliyi ilә düz mütәnasibdir. Qauss sistemindә P = χ e E {\displaystyle P=\chi _{e}E} burada χ e {\displaystyle \chi _{e}} – dielektrik qavrayıcılığı adlanan ölçüsüz sabit kәmiyyәtdir. Seqnetoelektriklәr üçün dielektrik qavrayıcılığı E {\displaystyle E} -dәn asılı olduğuna görә P {\displaystyle P} vә E {\displaystyle E} arasındakı әlaqә qeyri-xәttidir. D = ( 1 + 4 π χ e ) E = ε E {\displaystyle D=(1+4\pi \chi _{e})E=\varepsilon E} ε = 1 + 4 π χ e {\displaystyle \varepsilon =1+4\pi \chi _{e}} kәmiyyәti maddәnin dielektrik nüfuzluğu adlanır. BS-də P = χ e ε 0 E {\displaystyle P=\chi _{e}\varepsilon _{0}E} D = ε 0 ε E {\displaystyle D=\varepsilon _{0}\varepsilon E} ε = 1 + χ e {\displaystyle \varepsilon =1+\chi _{e}} Elektrik induksiya vektorunun daxil edilmәsinin mәnası ondan ibarәtdir ki, istәnilәn qapalı sәthdәn keçәn D {\displaystyle D} vektoru seli (axını) E {\displaystyle E} vektoru seli kimi verilәn sәthlә mәhdudlanan hәcm daxilindәki bütün yüklәrlә deyil, yalnız sәrbәst yüklәrlә tәyin edilir. Bu, bağlı (polyarlaşmış) yüklәri nәzәrә almamağa imkan verir vә bir çox mәsәlәlәrin hәllini sadәlәşdirir.
Elektrik intiqal
Elektrik intiqalı — elektrik enerjisini mexaniki enerjiyə çevirən və həmin çevrilmiş enerjinin idarə olunmasını təmin edən elektromexaniki qurğuya deyilir. Elektrik intiqalı əsas etibarı ilə istehsal mexanizmlərinin hərəkət etməsi üçün tətbiq olunur. Onun struktur sxemi belədir: M -> ÖM -> İO. Burada M - mühərrik, ÖM - ötürücü mexanizm, İO - işci orqandır. Elektrik intiqalının elektrik hissəsi mühərrikdən və elektrik aparatlarından ibarətdir. Onun mexaniki hissəsi isə işçi orqanın xarakterindən asılı olaraq çarx qolu, sürgü qolu, reduktor, hərəkəti təmzimləyən sürət qutusundan və s. ibarətdir.
Elektrik intiqalı
Elektrik intiqalı — elektrik enerjisini mexaniki enerjiyə çevirən və həmin çevrilmiş enerjinin idarə olunmasını təmin edən elektromexaniki qurğuya deyilir. Elektrik intiqalı əsas etibarı ilə istehsal mexanizmlərinin hərəkət etməsi üçün tətbiq olunur. Onun struktur sxemi belədir: M -> ÖM -> İO. Burada M - mühərrik, ÖM - ötürücü mexanizm, İO - işci orqandır. Elektrik intiqalının elektrik hissəsi mühərrikdən və elektrik aparatlarından ibarətdir. Onun mexaniki hissəsi isə işçi orqanın xarakterindən asılı olaraq çarx qolu, sürgü qolu, reduktor, hərəkəti təmzimləyən sürət qutusundan və s. ibarətdir.
Elektrik konnektoru
Elektrik konnektoru — elektrik dövrəsini mexaniki olaraq birləşdirib-ayırmaq üçün nəzərdə tutulmuş elektrotexniki qurğu. Adətən iki və ya daha artıq hissədən ibarətdir: çəngəl və ona uyğun rozet. Məişətdə çox vaxt "şteker" (ing. stecker) sözü ilə də adlandırılır. Bəzən qeyri-normativ leksikada "papa", yaxud "erkək" və "mama", yaxud "dişi" deyimlərindən də istifadə edilir. "Erkək" konnektorların kod nişanlanmasında çox zaman M (ing. male) və ya P (ing. plug) hərfi olur. Məsələn, DB-25 bağlayıcısının millər olan hissəsi DB-25M və ya DB-25P kimi nişanlana bilər. == Ədəbiyyat == İsmayıl Calallı (Sadıqov), “İnformatika terminlərinin izahlı lüğəti”, 2017, “Bakı” nəşriyyatı, 996 s.
Elektrik lampası
Elektrik lampası — elektrik enerjisi ilə qidalanan işıqlandırma avadanlığı. XIX əsrin sonuncu onilliyində ilk olaraq Avropada, daha sonra isə bütün dünyada istifadə edildi. Elektrik işıqlandırılması elm və texnikanın tarixində çox mühüm hadisələrdən biri olmaqla, həm də böyük və cürbəcür nəticələrə gətirdi. Lampanın bu formasını Thomas Edison icad edib və bu icad digər icadları qabaqlayaraq bütün dünyaya uğurla yayılıb. Həmin dövrdə iki tip: közərmə və qövs elektrik lampası yaradılmışdı. Onların iş prinsipi Volta qövsünə əsaslanırdı: əgər güclü cərəyan mənbəyinin qütblərinə qoşulmuş iki naqilin əks uclarını bir‐birinə toxundurub sonra bir neçə millimetr məsafəyə uzaqlaşdırsaq, bu naqillərin həmin (toxundurulub uzaqlaşdırılan) ucları arasında parlaq işıq saçan alov yaranar. Metal naqillər əvəzinə ucları itilənmiş (iynə şəklinə salınmış) iki kömür çubuq götürüldükdə bu hadisə daha gözəl və daha parlaq olar. Bu çubuqları tətbiq olunan gərginliyin kifayət qədər böyük qiymətlərində onların ucları arasında gözqamaşdırıcı şiddətə malik işıq əmələ gəlir.
Elektrik motoru
Elektrik mühərriki — elektromexaniki çevrici olub elektrik enerjisini mexaniki enerjiyə çevirir. Elektrik mühərriklərində (EM) valda oturdulmuş dolaqlarda maqnit sahəsinin yaratdığı qüvvə nəticəsində hərəkət yaranır və beləliklə val fırlanır. Buna görə də, elektrik mühərriklər həm də generatorun əksi tərəfi kimi qəbul edilir. EM-lərdə çox vaxt fırlanma, bəzi hallarda isə xətti hərəkət almaq mümkündür. Bu mühərriklər müxtəlif iş maşınlarını hərəkət etdirmək üçün tətbiq olunur. = Təsnifatı = Sabit elektrik cərəyanla işləyən EM, Dəyişən elektrik cərəyanla işləyən EM,-Sinxron EM-lərin rotoru firlanma tezliyi ilə maqnit sahəsinin firlanma tezliyi ilə üst-üstə düşür. -Asinxron EM-lərdə rotoru firlanma tezliyi ilə maqnit sahəsinin firlanma tezliyi ilə üst-üstə düşmür.Addım mühərrikləri – bunlarda rotorun vəziyyəti addımlarla təyin olunur. Rotoru istənilən vəziyyətə döndərmək üçün lazımi dolağa cərəyan impulsu vermək lazımdır. Vəziyyəti dəyişmək üçün başqa dolağa impuls ötürülür. Ventil mühərriklər – EM mühərrikləri olub qapalı sistemdən ibarətdir.
Elektrik mühəndisliyi
Elektrik mühəndisliyi — elektrik, elektronika və elektromaqnetizmdən istifadə edən avadanlıqların, cihazların və sistemlərin öyrənilməsi, layihələndirilməsi və tətbiqi ilə məşğul olan mühəndislik sahəsidir. Elektrik mühəndislyi 19-cu əsrdən etibarən telefon, teleqraf, elektrik enerjisinin istehsalı, paylanması və geniş miqyasda istifadəsi ilə birlikdə ayrıca bir elm sahəsi kimi meydana çıxmışdır. Elektrik mühəndisliyi müasir dövrdə geniş sahələrə bölünür. Bura daxildir: elektronika, rəqəmli kompüterlər, elektroenergetika, telekommunikasiya, idarəetmə sistemləri, radioelektronika, siqnalların emalı, cihazqayırma və mikroelektronika. Elektrik mühəndisləri bir qayda olaraq, elektrik mühəndisliyi və ya elektronika mühəndisliyi dərəcəsinə sahibdirlər. Bu işlə məşğul olan mühəndislər peşəkar sertifikatlaşdırma və peşəkar birliyin üzvləri ola bilər. Belə birliklərə Elektrik mühəndisləri İnstitu və Mühəndislik və Texnologiya İnstitutu daxildir. == Tarix == Elektrik sözü fizika vә texnikanın inkişafı prosesindә bir çox dәyişikliyә uğramışdır. Sadә elektrik vә maqnit hadisәlәri, bәzi cisimlәrin (mәs., kәhrәbanın) sürtünmә nәticәsindә yüngül cisimlәri özünә çәkmәsi, yәni elektriklәnmә xassәsi vә s. hәlә qәdimdәn mәlum idi.
Elektrik mühərriki
Elektrik mühərriki — elektromexaniki çevrici olub elektrik enerjisini mexaniki enerjiyə çevirir. Elektrik mühərriklərində (EM) valda oturdulmuş dolaqlarda maqnit sahəsinin yaratdığı qüvvə nəticəsində hərəkət yaranır və beləliklə val fırlanır. Buna görə də, elektrik mühərriklər həm də generatorun əksi tərəfi kimi qəbul edilir. EM-lərdə çox vaxt fırlanma, bəzi hallarda isə xətti hərəkət almaq mümkündür. Bu mühərriklər müxtəlif iş maşınlarını hərəkət etdirmək üçün tətbiq olunur. = Təsnifatı = Sabit elektrik cərəyanla işləyən EM, Dəyişən elektrik cərəyanla işləyən EM,-Sinxron EM-lərin rotoru firlanma tezliyi ilə maqnit sahəsinin firlanma tezliyi ilə üst-üstə düşür. -Asinxron EM-lərdə rotoru firlanma tezliyi ilə maqnit sahəsinin firlanma tezliyi ilə üst-üstə düşmür.Addım mühərrikləri – bunlarda rotorun vəziyyəti addımlarla təyin olunur. Rotoru istənilən vəziyyətə döndərmək üçün lazımi dolağa cərəyan impulsu vermək lazımdır. Vəziyyəti dəyişmək üçün başqa dolağa impuls ötürülür. Ventil mühərriklər – EM mühərrikləri olub qapalı sistemdən ibarətdir.
Elektrik müqaviməti
Elektrik müqaviməti — naqilin uzunluğu ilə düz, en kəsiyinin sahəsi ilə tərs mütənasib olub onun növündən asılıdır və cərəyanın keçməsinə mane olan keyfiyyətdir, R=ρl\S Burada R - naqilin müqaviməti, ɭ - uzunluğu, S - en kəsiyinin sahəsi, ρ - xüsusi müqavimətdir. R=U/İ R-elektrik müqaviməti, U-gərginlik və İ-cərəyan şiddətidir. Elektrik müqavimətinin vahidi BS-də alman alimi Georq Simon Om-un şərəfinə 1 om götürülür. == Əlaqədar anlayışlar == 1 Om - elə naqilin müqavimətidir ki, bu naqilin uclarına 1 V gərginlik tətbiq etdikdə ondan 1 A cərəyan keçsin. Xüsusi müqavimət - tili 1 m olan kub şəkilli naqildən kubun tili istiqamətində cərəyan keçən zaman yaranan müqavimətdir. Xüsusi müqavimətin BS-də vahidi 1 om·m-dir. Xüsusi müqavimətin texniki vahidi - 1 m uzunluqlu 1mm2 en kəsikli naqilin müqavimətidir. Xüsusi müqavimət cədvəllərində hər iki vahidlə qiymət verilir. 1Om mm2\m=10−6Om·m. Kifayət qədər yüksək temperaturlarda metalların müqavimətləri temperaturdan xətti asılıdır, Rt=R0(1+αt).
Elektrik qatarı
Elektrik qatarı — şəhərlərdə yol üstündə döşənmiş xüsusi relslərdə hərəkət edən sərnişin nəqliyyat vasitəsidir.