kimyəvi-mexaniki

kimyəvi-mexaniki
kimyəvi-fiziki
kimyəvi-termiki
OBASTAN VİKİ
Mexaniki dalğalar
Dalğa — rəqslərin mühitdə yayılması prosesidir. Mexaniki dalğa mexaniki rəqslərin elastik mühitdə yayılmasıdır. Mexaniki dalğaların yaranması və yayılması üçün ən vacib şərt elastik mühitin olmasıdır. Ümumi dalğa tənliyi budur: x = a cos ⁡ ω ( t − r v ) {\displaystyle x=a\cos \omega (t-{\frac {r}{v}})} Burada x-nöqtənin tarazlıq vəziyyətindən olan yerdəyişməsi, A-rəqsin amplitududur, t-rəqsin başlanması anından hesablanan zaman, v-dalğanın yayılma sürəti, r-rəqsin koordinat başlanğıcından t müddətinə yayıldığı məsafədir. Dalğanın 2 növü vardır: Uzununa dalğa – rəqs istiqamətində yayılan dalğaya deylir. Eninə dalğa – rəqslərə perpendikulyar istiqamətində yayılan dalğaya deyilir. Eninə dalğa zərrəciklərin rəqs istiqamətinə perpendikulyar istiqamətdə yayılan dalğaya deyilir. Eninə dalğa dalğa qabarıqlarının və çökəkliklərinin növbə ilə təkrarlanmasıdır. Eninə dalğalar elə mühitdə yayıla bilər ki, orada mühitün formasının dəyişməsi nəticəsində elastiklik qüvvələri yaransın. Ona görə də eninə elastik dalğalar ancaq bərk cisimlərdə yayılır.
Mexaniki deformasiya
Deformasiya — xarici qüvvənin təsiri ilə cismin forma və ölçülərinin dəyişməsidir. Onun aşağıdakı halları vardır: Elastik deformasiya – xarici qüvvenin təsiri kəsildikdən sonra cismin öz əvvəlki forma və ölçülərini almasına deyilir. Plastik deformasiya – xarici qüvvənin təsiri kəsildikdən sonra cismin öz əvvəlki forma və olçülərini almamasına(qalıq qalmasına)deyilir. Bərk cisimlərdə deformasiyanın növləri – dartılma,sıxılma,sürüşmə,burulma,əyilmədir. Dartılma deformasiyası – cismin uzunluğunu artmasına səbəb olan deformasyadır. Məsəlsən məftillərin, rezinin uzanması və s. Sıxılma deformasiyası – uzunluğun azalmasına səbəb olan deformasyadır. Sürüşmə deformasiyası – cismin paralel təbəqələrinin bu təbəqələrə paralel qüvvələrin təsiri ilə sürüşməsinə deyilir. Ayrı-ayrı metal hissələrini bağlayan bolt və pərçimlər sürüşmə deformasyasına məruz qalır. Burulma deformasiyası – bərk cisimlərin uclarına əks istiqamətdə yönəlmiş qüvvə momentləri tətbiq olunanda yaranan deformasyadır.
Mexaniki emal
Mexaniki emal – müxtəlif materiallardan hazırlanmış pəstaha son və ya sonrakı emal mərhələləri üçün lazımi dəqiqliyi və formanı vermək üçün tətbiq olunan emal növüdür. Maşınqayırmada əsasən üç mexaniki emal üsulu tətbiq olunur: 1. Kəsmə ilə emal, burada pəstah metalkəsən dəzgahda kəsici alətin köməy ilə addım-addım yonularaq lazımi formaya salınır. Tətbiq olunan kəsmə üsulları: xarici səthlər üçün torna, pardaqlama,hamarlama, cilalama, superfiniş, daxili səthlər üçün – içyonma, burğulama, zenkerləmə, rayberləmə, dartma, pardaqlama, cilalama, honalama. müstəvi səthlər üçün yonma, frezləmə və pardaqlama. 2. Plastiki deformasiya üsulu ilə xarici qüvvənin təsiri altında pəstah sıxılır, bu zaman o formasını, ölçüsünü, fiziki-mexaniki xassələrini dəyişir. Buraya döymə, ştamplama, pressləmə və yayma daxildir. 3. Elektrofiziki emal elektrik cərəyanının xassələrinə əsaslanır: elektro qığılcımla emal, elektro impulsla emal, elektro qövslə emal.
Mexaniki hərəkət
Mexaniki hərəkət — zaman keçdikcə bir cismin (yaxud maddi nöqtənin) digər cismə nəzərən, həmçinin eyni bir cismin ayrı-ayrı hissələrinin bir-birinə nəzərən məkanda yerdəyişməsi. Mexaniki hərəkəti riyazi baxımdan təsvir etmək üçün yerdəyişmə, gedilən yol, sürət, təcil və zaman kimi anlayışlardan istifadə olunur. Hərəkəti öyrənmək, yəni zaman keçdikcə cismin mexaniki yerdəyişməsini müəyyən etmək üçün müvafiq koordinat sistemi seçmək və onu hesablama cisminə bağlamaq lazımdır. Bundan əlavə gedilən yolun uzunluğunu təyin etmək üçün uzunluq etalonuna və zamanı ölçmək üçün ölçü cihazı rolu oynayan saata da ehtiyac vardır. Adətən sadaladığımız bu dörd ünsür — hərəkəti öyrənmək üçün seçdiyimiz cisim ona bağlı koordinat sistemi, uzunluq etalonu və saat birlikdə hesablama sistemi adlandırılır. Hər konkret mexaniki hərəkəti öyrənmək üçün müvafiq hesablama sistemi seçilir. Hərəkətin öyrənilməsi üçün vasitə rolunu oynayan koordinat sisteminin (məsələn, düzbucaqlı dekart koordinat sisteminin) başlanğıcı hesablama cismində yerləşdirilir və hərəkət məhz bu koordinat sisteminə nəzərən öyrənilir. Mexaniki hərəkət zaman keçdikcə cismin fəzada yerdəyişməsi olduğundan zaman və məkan anlayışları ilə yaxından tanış olmaq lazımdır. Klassik mexanikanın banisi Nyuton zaman və məkanı mütləq qəbul etmişdir. Nyutona görə zaman hesabat sistemindən asılı olmayaraq müntəzəm davam edir və bütün hesabat sistemləri üçün eynidir.
Mexaniki iş
Mexaniki iş — cismə təsir edən qüvvənin modulu, yol və qüvvə ilə yol arasındakı bucağın kosinusu hasilinə bərabər olan skalyar fiziki kəmiyyətdir. 1) Qüvvə ilə hərəkət istiqaməti arasındakı bucaq α olarsa, A = F × S × c o s α {\displaystyle A=F\times S\times cos\alpha } F {\displaystyle F} — qüvvə, S {\displaystyle S} isə yoldur. 2) Mexaniki iş güclə zamanın hasilinə bərabərdir: A = N × t {\displaystyle A=N\times t} . N {\displaystyle N} — güc t {\displaystyle t} isə zamandır. 3) Elektrik cərəyanının işi - verilmiş hissədəki gərginliklə cərəyan şiddəti və cərəyanın keçmə müddətinin hasilinə bərabərdir: A = U × J × T {\displaystyle A=U\times J\times T} düsturu ilə hesablanır. U {\displaystyle U} — gərginlik J {\displaystyle J} — cərəyan şiddəti T {\displaystyle T} isə zamandır. 1 Coul-1 Nyuton qüvvənin qüvvə istiqamətində gedilən 1m yolda gördüyü işə deyilir və BS-də iş vahidi olaraq götürülür. 1 C = 1 N × m {\displaystyle 1C=1N\times m} A = F × S × c o s α {\displaystyle A=F\times S\times cos\alpha } ifadəsindən göründüyü kimi əgər qüvvə hərəkət istiqamətindədirsə, iş ən böyük yəni A=FS, iti bucaq əmələ gətirirsə iş müsbət, düz bucaq əmələ gətirirsə A=0, kor bucaq əmələ gətirirsə mənfi olur. Potensiallı sahədə qapalı trayektoriya üzrə görülən iş sıfır olur. Həm də potensiallı sahədə görülən iş trayektoriyanın formasından asılı olmayıb başlanğıc və son nöqtələrin vəziyyəti ilə təyin olunur.
Mexaniki qüvvələr
Mexaniki qüvvələr — Təbiətdə müxtəlif növ qüvvələrə rast gəlinir: cazibə qüvvəsi, elektrik və maqnit qüvvələri, elastik qüvvə, səthi gərilmə qüvvəsi, sürtünmə qüvvəsi və s. Sadaladığımız bu qüvvələrin adları onların təzahür formaları ilə əlaqədardır. Məsələn, səthləri bir-birinə toxunan iki cisimdən biri digərinə nəzərən nisbi hərəkət edərsə onlar arasında yaranan təsir qüvvəsi sürtünmə qüvvəsi, uzanmış elastiki cismi ilk vəziyyətə qaytarmağa çalışan qüvvə elastiki qüvvə, sükunətdə olan iki yüklü hissəcik arasında yaranan təsir qüvvəsi elektrik qüvvəsi adlanır. Lakin hadisələrin mahiyyəti ilə dərindən tanış olduqda adını çəkdiyimiz bu üç qüvvənin eyni bir təbiətə — elektromaqnit təbiətinə malik olduğuna inanmaq olar. Meydanagəlmə xüsusiyyətlərinə görə qüvvələri iki qrupa bölmək olar: birbaşa təmasla meydanagələn qüvvələr və sahə qüvvələri. Deyilənləri əyani təsəvvür etmək üçün şəkil 1-ə nəzər salaq. Yayı uzatmaq və arabacığı hərəkət etdirmək üçün yayı və arabacığı dartmaq, qol vurmaq üçün isə topa birbaşa zərbə endirmək lazımdır. Göründüyü kimi, hər üç halda yalnız təsirə məruz qalan cisimlə birbaşa təmasda olmaqla onları hərəkətə gətirmək mümkündür. Bununla bərabər birbaşa təmasda olmayan cisimlər arasında da təsir qüvvələri mövcuddur. Məsələn, bir-birindən kifayət qədər uzaqda yerləşmiş göy cisimləri arasında, müxtəlif işarəli elektrik yükləri daşıyan cisimlər arasında, dəmirlə maqnit arasında qarşılıqlı təsir qüvvələrinin mövcud olduğu hər kəsə məlumdur.
Mexaniki reduktor
Mexaniki reduktor — fırlanma momentini bir və ya bir neçə mexaniki ötürmənin köməyi ilə ötürən və çevirən mexanizmdir. Mexaniki ötümənin əsas xarakteriskaları faydalı iş əmsalı, ötürmə ədədi, ötürülən güc, valların maksimal bucaq sürəti, aparan və aparılan valların sayı, növü və ötürmə pillərinin sayıdır. Adətən giriş valının böyük bucaq sürətini çıxış valının aşağı sürətinə çevirən və bununla fırlanma momentini artıran qurğulara reduktor deyilir. Belə reduktorlar demultiplikator adlanır. Əksinə işləyən reduktorlar isə multiplikatorlardır. Pilləli ötürmə ədədinə malik reduktorlar sürətlər qutusu kimi tanınır. Pilləsiz ötürmələrlə işləyənlər isə variatorlardır. Hər şeydən öncə onlar mexaniki ötürmənin növlərinə görə təsnifatlaşdırılırlar: silindirk, konik, sonsuzvint, planetar, dalğavari, spiroid və kombinəedilmiş. Reduktorlar həmçinin gövdə, soyuma sistemi, istifadə olunan yastıqların növü, fırlanma sürəti, ötürmə ədədi, ötürülən gücə görə də fərqləndirilirlər. Seriyalı istehsalda standartlaşdırılmış tökmə gövdələrdən istifadə edilir.
Mexaniki çəkic
Mexaniki çəkic yaxud deşər — bərk , məsələn dağ çöküntü süxurları, asfalt, beton konstruksiyaların dəlinməsi, kəsilməsi yaxud eşilməsi üçün nəzərdə tutulmuş zərbə hərəkətli əl aləti. Hər hansı təhriklə (məsələn pnevmatika ilə) hərəkətə gətirilən metal süngü və ya tir. Təhrik hissəsinin zərbə hissəsinə ötürdüyü impuls nəticəsində, dəmir süngü emal olunan metariala dəlməklə və ya kəsməklə təsir edir.
Mexaniki ötürmə
Transmissiya — fırlanma momentini mühərrikdən nəqliyyat vasitəsinin təkərlərinə, torna dəzgahının patronuna ötürən və eyni zamanda gücün, sürətin dəyişdirilməsi üçün mexanizmlər toplusu. Transmissiyanın tərkibinə daxildirlər: Mufta Kardan valı Differensial Oynaqlı birləşmə Чобиток В. А., Данков Е. В., Брижинев Ю. Н. и др. Конструкция и расчет танков и БМП. Учебник.
Kimyəvi birləşmə
Kimyəvi birləşmələr və ya Mürəkkəb maddələr — müxtəlif element atomlarından əmələ gəlmiş maddələrə deyilir. Məsələn, su hidrogen və oksigen elementlərnin atomlarından; sulfat turşusu isə hidrogen, oksigen və kükürd elementlərinin atomlarından əmələ gəlmiş mürəkkəb maddələrdir. Mürəkkəb maddələr üzvi və qeyri-üzvi maddələrə bölünür. Bütün üzvi maddələr mürəkkəb maddədirlər, lakin bütün qeyri-üzvi maddələr mürəkkəb maddə deyillər. Qeyri-üzvi maddələrin bir qismi bəsit maddələrdir. Aqreqat hallarına görə mürəkkəb maddələr qaz, maye və bərk formada olurlar. Mürəkkəb maddələr də molekulyar və qeyri-molekulyar quruluşlu olurlar.
Kimyəvi birləşmələr
Kimyəvi birləşmələr və ya Mürəkkəb maddələr — müxtəlif element atomlarından əmələ gəlmiş maddələrə deyilir. Məsələn, su hidrogen və oksigen elementlərnin atomlarından; sulfat turşusu isə hidrogen, oksigen və kükürd elementlərinin atomlarından əmələ gəlmiş mürəkkəb maddələrdir. Mürəkkəb maddələr üzvi və qeyri-üzvi maddələrə bölünür. Bütün üzvi maddələr mürəkkəb maddədirlər, lakin bütün qeyri-üzvi maddələr mürəkkəb maddə deyillər. Qeyri-üzvi maddələrin bir qismi bəsit maddələrdir. Aqreqat hallarına görə mürəkkəb maddələr qaz, maye və bərk formada olurlar. Mürəkkəb maddələr də molekulyar və qeyri-molekulyar quruluşlu olurlar.
Kimyəvi coğrafiya
Kimyəvi coğrafiya landşaftın ayrı-ayrı komponentlərinin kimyəvi xüsusiyyətlərinin ərazicə yayılması qanunauyğunluqları haqqında elm sahəsi. aşkar edilmişdir ki, bitkinin, heyvanın, səthi və qrunt sularının,atmosfer yağıntılarının və s. kimyəvi tərkibi coğrafi zonallıq qanunauyğunluğuna tabedir. Belə ki, müxtəlif coğrafi zonalarda həm yabanı, həm də mədəni bitkilərin kimyəvi tərkibi müxtəlifdir. Məsələn, quru iqlim şəraitində yetişdirilən buğdanın dənində zülallar rütubətli iqlimdəkindən çoxdur.
Kimyəvi element
Kimyəvi element — eyni cins atomlardan ibarət olan, fiziki və ya kimyəvi yollarla özündən daha sadə və fərqli maddələrə ayrıla bilməyən saf maddələrə element deyilir. Məsələn su bir element deyil. Lakin suyun elektrolizindən əldə edilən hidrogen və oksigen elementdirlər. Elementi meydana gətirən bütün atomların böyüklükləri və atomların arasındakı uzaqlıq eynidir. Lakin bir elementin atomları ilə başqa bir elementin atomlarının böyüklükləri və atomları arasındakı məsafə fərqlidir. Eyni elementdən düzəldilən fərqli maddələr də eyni cins atomlardan meydana gəlirlər. Elementi meydana gətirən atomların bir-birinə olan uzaqlığı elementin qatı, maye və qaz halına görə dəyişə bilər. Canlı və cansız varlıqların hamısı elementlərdən meydana gəlirlər. Kimyəvi element nüvəsinin yükü eyni olan atom növüdür. Kimyəvi elementlər bir-biri ilə birləşərək bizi əhatə edən aləmin bütün mürəkkəb maddələrini əmələ gətirirlər.
Kimyəvi elementlər
Kimyəvi element — eyni cins atomlardan ibarət olan, fiziki və ya kimyəvi yollarla özündən daha sadə və fərqli maddələrə ayrıla bilməyən saf maddələrə element deyilir. Məsələn su bir element deyil. Lakin suyun elektrolizindən əldə edilən hidrogen və oksigen elementdirlər. Elementi meydana gətirən bütün atomların böyüklükləri və atomların arasındakı uzaqlıq eynidir. Lakin bir elementin atomları ilə başqa bir elementin atomlarının böyüklükləri və atomları arasındakı məsafə fərqlidir. Eyni elementdən düzəldilən fərqli maddələr də eyni cins atomlardan meydana gəlirlər. Elementi meydana gətirən atomların bir-birinə olan uzaqlığı elementin qatı, maye və qaz halına görə dəyişə bilər. Canlı və cansız varlıqların hamısı elementlərdən meydana gəlirlər. Kimyəvi element nüvəsinin yükü eyni olan atom növüdür. Kimyəvi elementlər bir-biri ilə birləşərək bizi əhatə edən aləmin bütün mürəkkəb maddələrini əmələ gətirirlər.
Kimyəvi formul
Kimyəvi formul — kimyəvi birləşmələrin kəmiyyət və keyfiyyət tərkibini bildirmək üçün istifadə olunan kimyəvi işarə və indeks toplusudur. İndeks-elementin işarəsinin sağ tərəfində aşağıda yazılan və atomların sayını göstərən ədədə deyilir.
Kimyəvi kinetika
Kimyəvi kinetika — kimyanın əsas sahələrindən biri olub, kimyəvi reaksiyaların sürətinin və onun müxtəlif amillərindən — reaksiyaya daxil olan maddələrin qatılığından, temperaturdan, təzyiqdən (qazlar üçün), katalizatorların təsirindən və s. asılılığı öyrənir. == Reaksiyanın sürəti == Kimyəvi reaksiyaların hamısı eyni sürətlə getmir. Bəzi kimyəvi reaksiyalar çox böyük sürətə malik olduğundan , demək olar ki, ani vaxtda başa çatır. Məsələn, partlayıcı maddələrin reaksiyası saniyəönin on mində bir hissəsi ərzində qurtarır. Bununla yanaşı elə reaksiyalar da vardır ki, onların axıra çatması üçün saatlar, sutkalar və hətta illərlə vaxt lazım olur. Kimyəvi reaksiyanın sürəti hər şeydən əvvəl reaksiyaya daxil olan maddələrin təbiətindən və həmçinin onların qatılığından, temperaturdan, katalizator istirakından və s.-dən asılıdır. Bu sürəti vahid həcmdə (homogen sistemdə) zaman vahidi ərzində cərəyan edən reaksiya həcmi ilə ölçülür. Daha dəqiq deyilərsə, reaksiyanın sürəti reaksiyaya daxil olan və ya reaksiya nəticəsində əmələ gələn maddələrin qatılığının (əsasən mol/l-lə) zaman vahidi (dəqiqə və ya saniyə) ərzində dəyişməsi ilə xarakterizə olunur. A + B → C + D , {\displaystyle A+B\to C+D,} v = ∂ C ∂ t = − ∂ A ∂ t .
Kimyəvi meliorasiya
Kimyəvi meliorasiya — Torpağın xassələrini yaxşılaşdırmaq və kənd təsərrüfatı bitkilərinin məhsuldarlığını yüksəltmək üçün torpağa kimyəvi təsir göstərmək üsulları sistemi. Kimyəvi meliorasiya üsulları: torpaqda yüksək turşuluğa qarşı əhəngli gübrələrdən istifadə edilməsi. (əsasən çimli podzol torpaqlar üçün; torpağın gipslənməsi (şorakətli torpaqlar üçün) – qələviliyi azaltmaq üçün torpağa gips verilir; torpağın turşulaşdırılması (neytral və qələvi reaksiyalı torpaqlar üçün), bu məqsədlə torpağa natrium 2-sulfat verilir. (bəzi bitkilər üçün, məs. çay bitkisi); Kimyəvi meliorasiyaya həmçinin melorasiya olunan torpağı tam yaxşılaşdırmaq üçün yüksək dozada mineral və üzvi gübrələrin verilməsi də aid edilir. Kimyəvi meliorasiya adətən hidrotexniki meliorasiya ilə birlikdə aparılır. (məs. şorakət torpaqların yuyulması). == Kimyəvi optium == Torpaq və su mühitində orqanizmin maksimum məhsuldarlığını təmin edən kimyəvi elementlərin tərkibi və nisbəti.
Kimyəvi rabitə
Kimyəvi rabitə — molekullarda və onlar arasında əlaqə yaradan qüvvələr toplusu. Kimyəvi rabitə- maddənin xassəsi onun kimyəvi tərkibi, molekulundakı atomların qarışılıqlı təsiri ilə müəyyən edilir. Atomun quruluş nəzəriyyəsi kimyəvi rabitənin təbiətini və molekulun əmələgəlmə mexanizmini izah edir. == Kimyəvi rabitənin növləri == Rabitələrin aşağıdakı növləri var: Hidrogen Kovalent İon Metal == Molekul == Molekul, iki və daha çox atomdan təşkil olunmuş hissəcikdir. Ən sadə molekul iki hidrogen atomundan əmələ gəlmiş hidrogen molekuludur (H2). Molekulda atomları bir-birinə bağlayan qüvvələr cəmi kimyəvi rabitə adlanır. Müəyyən edilmişdir ki, kimyəvi rabitənin yaranması və onun təbiəti, əsasən qarşılıqlı təsirdə olan element atomlarının xarici elektron təbəqələrinin quruluşu ilə əlaqədardır. Rabitənin əmələ gəlməsində iştirak edən elektronlara valent elektronları deyilir. Oktet qaydasına görə, kimyəvi rabitə yaranarkən xarici energetik səviyyələr tamamlanır, əksər hallarda 8 elektronlu oktet… ns2np6, bəzi hallarda (H-, He0, Li+, Be2+, B3+ atom və ionları üçün 2 elektronlu dublet vəziyyəti −1s2 yaranır. == Elementlərin elektromənfiliyi == Birləşmələrdə kimyəvi rabitənin tipini qabaqcadan bilmək üçün elementlərin elektromənfilik anlayışından istifadə edilir.
Kimyəvi reaksiya
Kimyəvi reaksiya — maddənin tərkib və xassələrinin dəyişməsi ilə baş verən hadisəyə Edvin teoremi deyilir. Kimyəvi reaksiyalar həmişə fiziki hadisələrlə müşayət olunur. Fiziki hadisə zamanı maddənin tərkibi dəyişmir, yalnız forması, həcmi və aqreqat halı dəyişir. Kimyəvi reaksiyaları aşağıdakı xarici əlamətlərə görə müəyyən etmək olur: İstiliyin ayrılması və ya udulması; İşığın ayrılması; Rəngin dəyişməsi; Çöküntünün əmələ gəlməsi və ya itməsi; Qaz halında maddənin ayrılması; İyin çıxması. Kimyəvi reaksiyaların baş verməsi üçün reaksiyaya daxil olan maddələr bir-biri ilə təmasda olmalı və əksər hallarda qızdırılmalıdır. Bərk maddələrin xırdalanması və qarışdırılması reaksiyanın başlanmasına kömək edir və reaksiyanı sürətləndirir. Kimyəvi reaksiyanın gedişinin əmsallar və formullar vasitəsilə şərti yazılışına kimyəvi tənlik deyilir. Kimyəvi tənliklər tərtib edilərkən maddə kütləsinin saxlanması və maddə tərkibinin sabitliyi qanunlarından istifadə edilir. Hər tənlik ox işarəsi ilə birləşmiş iki hissədən ibarətdir. Sol tərəfdə reaksiyaya girən maddələrin, sağ tərəfdə isə reaksiya nəticəsində alınan maddələrin formulları yazılır: 2H2 + O2 → 2H2O == Kimyəvi reaksiyaların sürəti == Kimyəvi reaksiya haqqında əsas məlumatları əldə etmək üçün onun sürətini bilmək vacibdir.
Kimyəvi reaksiyalar
Kimyəvi reaksiya — maddənin tərkib və xassələrinin dəyişməsi ilə baş verən hadisəyə Edvin teoremi deyilir. Kimyəvi reaksiyalar həmişə fiziki hadisələrlə müşayət olunur. Fiziki hadisə zamanı maddənin tərkibi dəyişmir, yalnız forması, həcmi və aqreqat halı dəyişir. Kimyəvi reaksiyaları aşağıdakı xarici əlamətlərə görə müəyyən etmək olur: İstiliyin ayrılması və ya udulması; İşığın ayrılması; Rəngin dəyişməsi; Çöküntünün əmələ gəlməsi və ya itməsi; Qaz halında maddənin ayrılması; İyin çıxması. Kimyəvi reaksiyaların baş verməsi üçün reaksiyaya daxil olan maddələr bir-biri ilə təmasda olmalı və əksər hallarda qızdırılmalıdır. Bərk maddələrin xırdalanması və qarışdırılması reaksiyanın başlanmasına kömək edir və reaksiyanı sürətləndirir. Kimyəvi reaksiyanın gedişinin əmsallar və formullar vasitəsilə şərti yazılışına kimyəvi tənlik deyilir. Kimyəvi tənliklər tərtib edilərkən maddə kütləsinin saxlanması və maddə tərkibinin sabitliyi qanunlarından istifadə edilir. Hər tənlik ox işarəsi ilə birləşmiş iki hissədən ibarətdir. Sol tərəfdə reaksiyaya girən maddələrin, sağ tərəfdə isə reaksiya nəticəsində alınan maddələrin formulları yazılır: 2H2 + O2 → 2H2O == Kimyəvi reaksiyaların sürəti == Kimyəvi reaksiya haqqında əsas məlumatları əldə etmək üçün onun sürətini bilmək vacibdir.
Kimyəvi reaktivlər
Kimyada bir reaktiv, regent, reaksiya və ya reaktant müəyyən bir birləşmə ilə xarakterik bir reaksiyaya daxil ola bilən və beləliklə həmin birləşmənin varlığını və ya hətta miqdarını təyin edərək reaksiyadan bir məhsul istehsal edən bir qarışıqdır. Analitik reaktivlərin nümunələrinə Fehling reaktivi və Tollens reaktivi aiddir. Üzvi kimyada, reagentlər birləşmə və ya qarışıq ola bilərlər və bu da üzvi reaktivin dəyişməsinə səbəb olur. Üzvi reaktivlərə nümunə olaraq Collins reaktivini, Fenton reaktivini və Grignard reaktivini göstərmək olar, katalizatorlar isə reaktiv deyildirlər.
Kimyəvi sensorlar
Kimyəvi sensorlar -Maddənin tərkibi ilə hər hansı ölçülə bilən xassəsi arasında əlaqə yaratmaq, məlum qanunauyğunluqlardan istifadə edərək qatılıqların təyini və uyğun cihazların yaradılması analitik kimyanın tarixi boyunca vacib məsələlərdən biri olmuşdur və elə bu gün də öz aktuallığını qoruyur. Bu cihazlara sensorlar və ya kimyəvi sensorlar daxildir, hansı ki bu cihazlar maddədən müəyyən miqdar ayırmadan və xüsusi hazırlanmış nümunə götürmədən mühitin (məhlulun) kimyəvi tərkibindən bir başa məlumat verir. Kimyəvi sensorlar – kimyəvi selektiv sensor təbəqəsindən müəyyən etdiyimiz komponentin iştirakına və tərkibinin dəyişməsinə aid cavab siqnalı verir, həmçinin fiziki çeviricidən (transdyuserdən) ibarətdir. Selektiv qatın müəyyən etdiyimiz komponentlə gedən reaksiyasında yaranan enerjini elektrik və ya işıq siqnalına çevirir və daha sonra işığa həssas elektron cihazla ölçülür. Bu siqnal elə analitik siqnaldır ki, mühitin (məhlulun) tərkibi haqqında birbaşa məlumat verir. Kimyəvi sensorlar kimyəvi reaksiyaların prinsipi üzərindən yalnız müəyyən etdiyimiz komponentlə həssas təbəqə arasında gedən kimyəvi əlaqədə analitik siqnal yaranan zaman və ya fiziki proseslərin üzərində fiziki parametr (işığın udulması və əks olunması, kütlə, elektrik keçirici) ölçülən zaman işləyə bilər. Ilk halda həssas təbəqə kimyəvi çevirici funksiyasını yerinə yetirir. Seçiciliyi artırmaq üçün kimyəvi sensorun giriş cihazında (kimyəvi həssas təbəqənin önündə) müəyyən olunan komponentin hissəciklərini selektiv şəkildə ötürən membranlar (ion əvəzedici, dialis, hidrofob və s.) yerləşə bilər. Bu halda müəyyən etdiyimiz maddə yarımkeçirici membrandan kimyəvi çeviricinin nazik təbəqəsinə diffuziya olunur. Hansı ki, bu nazik təbəqədə komponentin üzərində analitik siqnal formalaşır və kimyəvi sensorların əsasında sensor analizatorlar verilmiş qatılıq diapazonunda hər hansı bir maddəni müəyyən etmək üçün nəzərdə tutulmuş cihazlar konstruksiya edilir.
Kimyəvi silah
Kimyəvi silah — zəhərləyici təsirə malik tseriksonik maddələrin toksik xassələrinə əsaslanan kütləvi qırğın silahıdır. Tətbiq vasitələri isə – raketlər, mərmilər, minalar, aviasiya bombalarıdır. Axırıncı dəfə kütəvi olaraq kimyəvi silahdan Birinci dünya müharibəsində istifadə olunub. == Kimyəvi silahın növləri == Kimyəvi silahı aşağıdakı xüsusiyyətlərinə görə təsnif olunur: İnsan orqanizminə təsir xarakterinə görə; Taktiki təyinatına görə; Təsir tezliyinə görə; Dayanıqlığına görə; Tətbiq vasitələrinə görə. Taktiki cəhətdən kimyəvi silahlar 2 tipə bölünür: Öldürücü (sinir-paralitik, dəri- deşici, ümumi zəhərləyici, boğucu təsirli); Ziyanverici (Psixotrop maddələr və İrritantlar). Təsir sürətinə görə kimyəvi silahlar: Tez (sinir-paralitik, ümumi zəhərləyici, qıcıqlandırıcı və bəzi psixotrop maddələr); Gec(dəri- deşici, boğucu təsirli və bir neçə növ psixotrop maddə) təsir edən maddələr ayrılır. Təsir müddətinə görə kimyəvi silahlar: Uçucu ya dayanıqsız (təsiri dəqiqələrlə hesablanır); Dayanıqlı maddələr (təsiri bir neçə saatdan bir neçə həftəyə qədər). Elə kimyəvi tərkiblər var ki, onların istifadəsi canlı qüvvəyə qarşı istifadə olunmur. Məsələn, Vyetnam müharibəsində ABŞ ağaclardan yarpaqları tökən maddə – tərkibində dioksin olan dioksin "Agent Orange" istifadə etmişdilər. == İnsanlara təsiri == İnsan orqanizminə təsirinə görə aşağıdakı 6 növ zəhərləyici maddə var.
Kimyəvi silahlar
Kimyəvi silah — zəhərləyici təsirə malik tseriksonik maddələrin toksik xassələrinə əsaslanan kütləvi qırğın silahıdır. Tətbiq vasitələri isə – raketlər, mərmilər, minalar, aviasiya bombalarıdır. Axırıncı dəfə kütəvi olaraq kimyəvi silahdan Birinci dünya müharibəsində istifadə olunub. == Kimyəvi silahın növləri == Kimyəvi silahı aşağıdakı xüsusiyyətlərinə görə təsnif olunur: İnsan orqanizminə təsir xarakterinə görə; Taktiki təyinatına görə; Təsir tezliyinə görə; Dayanıqlığına görə; Tətbiq vasitələrinə görə. Taktiki cəhətdən kimyəvi silahlar 2 tipə bölünür: Öldürücü (sinir-paralitik, dəri- deşici, ümumi zəhərləyici, boğucu təsirli); Ziyanverici (Psixotrop maddələr və İrritantlar). Təsir sürətinə görə kimyəvi silahlar: Tez (sinir-paralitik, ümumi zəhərləyici, qıcıqlandırıcı və bəzi psixotrop maddələr); Gec(dəri- deşici, boğucu təsirli və bir neçə növ psixotrop maddə) təsir edən maddələr ayrılır. Təsir müddətinə görə kimyəvi silahlar: Uçucu ya dayanıqsız (təsiri dəqiqələrlə hesablanır); Dayanıqlı maddələr (təsiri bir neçə saatdan bir neçə həftəyə qədər). Elə kimyəvi tərkiblər var ki, onların istifadəsi canlı qüvvəyə qarşı istifadə olunmur. Məsələn, Vyetnam müharibəsində ABŞ ağaclardan yarpaqları tökən maddə – tərkibində dioksin olan dioksin "Agent Orange" istifadə etmişdilər. == İnsanlara təsiri == İnsan orqanizminə təsirinə görə aşağıdakı 6 növ zəhərləyici maddə var.
Kimyəvi sintez
Kimyəvi sintez — kimyəvi birləşmələrin kimyəvi və fiziki metodlarla alınmasıdır. Kimyəvi maddələrin təbiətindən asılı olaraq, bu sintezlər üzvi və ya qeyri-üzvi ola bilərlər. == Üzvi sintez == Üzvi kimya tarixini bir neçə dövrə bölmək olar. Birinci dövr — bu üzvi kimya anlayışının meydana çıxması dövrü. İkinci dövr — kimyada atom-molekul anlayışları və çəki nisbətlərinin irəli sürülməsi, maddənin saxlanması qanunu kimi Lavuazye-Lomonosov fikirlərinin meydana çıxması ilə əlaqədar olan dövrdür. Üçüncü dövr sintez və quruluş nəzəriyyəsi dövrü adlana bilər; bu dövr keçən əsrin ortalarından başlayaraq 1920-ci illərə qədər davam etmişdir. Bu dövrdə üzvi kimyanın tərəqqisinə, əsasən, aşağıdakı 3 fakt səbəb olmuşdur: həyat qüvvəsi nəzəriyyəsinin məğlubiyyəti və bununla əlaqədar olaraq üzvi sintezin tərəqqisi; A. M. Butlerovun nəzəri cəhətdən kimya tarixində böyük əhəmiyyəti olan quruluş nəzəriyyəsi; daş kömür qatranının emalı və bununla əlaqədar olaraq yeni üzvi sintetik kimya sənayesinin meydana çıxması. Dünyanın müxtəlif laboratoriyalarında müxtəlif üzvi maddələr sintez edilir və bəzən yeni üzvi maddələr əvvəlcə laboratoriyalarda sintez olunur, sonra təbiətdə tapılırdı. Hazırda kimya laboratoriyası bu cəhətdən təbiəti ötmüşdür, təbiətdə olmayan bir çox üzvi maddələr sənaye miqyasında zavodlarda min tonlarla alınmaqda və işlənməkdədir. == Kimyəvi materialşünasılıqda sintez metodları == Kimyəvi materialşünaslıqda bir sıra sintez metodları geniş istifadə olunur.