Qeyri-qabarıqlılıq iqtisadiyyatda — ibtidai iqtisadiyyatın qabarıqlıq fərziyyələrinin pozulmasına aiddir. Əsas iqtisadiyyat dərsliklərində qabarıq seçimləri olan (qabaqcılları orta dəyərlərdən üstün olmayan) və qabarıq büdcə dəstləri olan istehlakçılara, həmçinin qabarıq istehsal dəstləri olan istehsalçılara diqqət yetirilir; qabarıq modellər üçün proqnozlaşdırılan iqtisadi davranış yaxşı başa düşülür.[1][2] Konveksiya fərziyyələri pozulduqda, rəqabətli bazarların bir çox yaxşı xüsusiyyətlərinə sahib olmaq lazım deyil: beləliklə qabarıqlıq tələb və təklif fərqli olduqda və ya bazar tarazlığı ola biləcəyi zaman bazar uğursuzluqları ilə əlaqələndirilir [3][4] təsirsiz.[5][6][7][8] Qabarıq olmayan iqtisadiyyatlar qabarıq analizin ümumiləşdirilməsi olan hamar olmayan analizdən istifadə etməklə öyrənilir.
Tercihlər dəsti qabarıq deyilsə, bəzi qiymətlər iki ayrı optimal səbəti dəstəkləyən büdcə xəttini təyin edir. Məsələn, zooparklar üçün bir aslanın bir qartalla eyni qiymətə olduğunu və bununla yanaşı, zoopark büdcəsinin bir qartal və ya bir aslan üçün kifayət olduğunu xəyal edə bilərik. Zoopark gözətçisinin hər hansı bir heyvanı bərabər dəyərdə hesab etdiyi də ehtimal edilə bilər. Bu vəziyyətdə, zoopark ya bir aslan, ya da bir qartal alıb. Əlbəttə ki, müasir bir zoopark yarısı qartal və yarısı aslan almaq istəmir. Beləliklə, heyvanat parkı gözətçisinin üstünlükləri qabarıq deyil: heyvanat parkı qoruyucusu, hər hansı bir heyvana sahib olmağa üstünlük verir, əksinə onların hər hansı bir qabarıq birləşməsindən daha çox.
İstehlakçının üstünlük dəsti qabarıq olmayan olduqda, (bəzi qiymətlər üçün) istehlakçının tələbi əlaqələndirilmir; Bağlı bir tələb, istehlakçı tərəfindən Harold Hotellinqin müzakirə etdiyi bəzi kəsici davranışları nəzərdə tutur:
Satınalmalar üçün laqeydlik əyriləri dalğalı bir xarakterə sahib, bəzi bölgələrdə mənşəyə doğru qabarıq və digər bölgələrdə qeyri-qabarıqlılıq kimi düşünülürsə, yalnız mənşəyə doğru qabarıq hissələrin hər hansı bir əhəmiyyətə sahib olduğu qənaətinə gəlirik. , çünki digərləri əslində müşahidə edilə bilməz. Bunlar yalnız qiymət nisbətlərinin dəyişməsi ilə tələbdə baş verə bilən fasilələrlə aşkar edilə bilər ki, bu da düz xətt döndürüldükdə bir cəngəllik nöqtəsinin kəskin bir sıçrayışına səbəb olur. Fəqət, bu cür fasilələr qarışıqlıqların mövcudluğunu göstərsə də, dərinliklərini heç vaxt ölçə bilməzlər. Laqeydlik əyrilərinin qeyri-qabarıqlılıq hissələri və onların çoxölçülü ümumiləşdirmələri, əgər mövcuddursa, sonsuza qədər ölçülməz qaranlıqda qalmalıdır.[9]
Divertə [10] görə, qabarıq olmayan üstünlükləri öyrənməyin çətinlikləri Hermann Vold [11] və yenə də qabarıqlıqların “əbədi qaranlıqda kəfənləndiyini ...” [12] yazan Paul Samuelson tərəfindən vurğulandı.
Konveksiya fərziyyələri pozulduqda, rəqabətli bazarların bir çox yaxşı xüsusiyyətlərinə sahib olmaq lazım deyil: beləliklə qabarıqlıq tələb və təklif fərqli olduqda və ya bazar tarazlığı təsirsiz ola biləcəyi zaman bazar uğursuzluqları ilə əlaqələndirilir[13]. 1959-cu ildən 1961-ci ilədək, The Journal of Political Economy (JPE) jurnalındakı bir sıra məqalələrdə qabarıq olmayan üstünlüklər vurğulanmışdır. Əsas iştirakçılar Farrell,[14] Bator,[15] Kupmans,[16] In particular, Rothenberg's paper discussed the approximate convexity of sums of non-convex sets.[17] və Rotenberq idi.[18] Xüsusilə, Rotenberq məqaləsində qabarıq olmayan çoxluqların cəmlərinin təxmini qabarıqlığı müzakirə olunur[19][20]. Bu JPE sənədləri görkəmli istehlakçı üstünlüklərini nəzərə alan və "kobud tarazlıq" anlayışını təqdim edən Lloyd Şapley və Martin Şubikin işini stimullaşdırdı [21]. JPE məqalələri və Şapley-Şubik məqaləsi, Robert Auman tərəfindən irəli sürülmüş başqa bir "kvazi tarazlıq" anlayışına təsir etdi[22][23] .
Qabarıq olmayan çoxluqlar ümumi iqtisadi tarazlıq nəzəriyyəsinə daxil edilmişdir. Bu nəticələr məzunlar üçün mikroiqtisadiyyat,[24] ümumi tarazlıq nəzəriyyəsi, oyun nəzəriyyəsi, riyazi iqtisadiyyat və tətbiqi riyaziyyat (iqtisadçılar üçün) [25] dərsliklərində təsvir edilmişdir. Şapley - Folkman lemma, qabarıqlıqların çox sayda istehlakçıya sahib bazarlarda təxmini tarazlığa uyğun olduğunu bildirir; bu nəticələr çox sayda kiçik firma olan istehsal iqtisadiyyatına da aiddir.
Qabarıqlıq oliqopoliya və xüsusilə inhisarlar üçün vacibdir.[5] Bazar gücünü istismar edən böyük istehsalçıların narahatlığı, qabarıq olmayan dəstlər haqqında ədəbiyyatı başlatdı, Pyero Sraffa 1926-cı ildə miqyası artan gəliri olan firmalar haqqında yazdı[26], bundan sonra Harold Hotelling 1938-ci ildə marjinal xərclər haqqında yazdı.[27] Həm Sraffa, həm də Hotelling, rəqibləri olmayan istehsalçıların bazar gücünü işıqlandırdı və iqtisadiyyatın tədarük tərəfi ilə bağlı bir ədəbiyyatı açıq şəkildə stimullaşdırdı.[28]
Son iqtisadi araşdırmalar, inkişaf etməkdə olan iqtisadiyyat sahələrində qabarıqlığı tanımadı. Bu sahələrdə qabarıqlıq olmayan, tarazlığın səmərəli olmamalı olduğu və ya tələb və təklifin fərqli olduğu üçün rəqabətli tarazlığın mövcud olmadığı bazar uğursuzluqları ilə əlaqələndirilir.[1][4][4][5][29][30][31] Qabarıq olmayan dəstlər ətraf mühitin faydaları (və digər xarici amillər) ilə də yaranır[30] və bazarda baş verən uğursuzluqlar[31] və dövlət iqtisadiyyatı.[3] Qeyri-qabarıqlıqlara [5] informasiya iqtisadiyyatı və fond bazarlarında [32] (və digər natamam bazarlarda) da rast gəlinir [29][33]. Bu cür tətbiqlər iqtisadçıları qabarıq olmayan dəstləri öyrənməyə sövq etməyə davam edirdi [34][35] . Bəzi hallarda qeyri-xətti qiymət və ya sövdələşmə bazar uğursuzluğunu rəqabətli qiymətlər vasitəsi ilə aşa bilər; digər hallarda tənzimləmə təmin edilə bilər[1].
Daha əvvəl göstərilən tətbiqetmələr, nöqtələrin məhsul paketləri olduğu qabarıqlıqların sonsuz ölçülü vektor boşluqları ilə əlaqədardır. Bununla yanaşı, iqtisadçılar diferensial tənliklər, dinamik sistemlər, stoxastik proseslər və funksional analiz nəzəriyyələrindən istifadə edərək zamanla dinamik optimallaşdırma problemlərini də nəzərdən keçirirlər: iqtisadçılar aşağıdakı optimallaşdırma metodlarından istifadə edirlər:
Bu nəzəriyyələrdə müntəzəm problemlər qabarıq sahələrdə müəyyən edilmiş qabarıq funksiyaları əhatə edir və bu qabarıqlıq sadələşdirilmiş metodlara və nəticələrin iqtisadi cəhətdən mənalı şərhinə imkan verir.[41][42][43] İqtisadiyyatda dinamik proqramlaşdırma Martin Bekmen və Riçard F. Mut tərəfindən inventar nəzəriyyəsi və istehlak nəzəriyyəsi üzərində işləmək üçün istifadə edilmişdir.[44] Robert S. Merton, müvəqqəti kapital aktivlərinin qiymətləri modelinə dair 1973 məqaləsində dinamik proqramlaşdırmadan istifadə etmişdir [45]. (Mertonun portfel probleminə də baxın). Merton modelində investorlar bugünkü gəlirlə gələcək gəlir və ya kapital qazancı arasında seçim edirlər və onların həllinə dinamik proqramlaşdırma istifadə olunur. Stokey, Lukas və Preskot iqtisadiyyatdakı stoxastik proseslərlə əlaqəli problemləri həll etmək üçün dinamik proqramlaşdırmadan istifadə edirlər [46]. Dinamik proqramlaşdırma optimal iqtisadi böyümə, resurs çıxarılması, əsas agent vəzifələri, dövlət maliyyəsi, iş investisiyaları, aktiv qiymətləri, amil təchizatı və istehsalın təşkili üçün istifadə edilmişdir. Ljungqvist & Sargent pul siyasəti, vergi siyasəti, vergi, iqtisadi artım, axtarış nəzəriyyəsi və əmək iqtisadiyyatı ilə bağlı müxtəlif nəzəri məsələləri araşdırmaq üçün dinamik proqramlaşdırmadan istifadə edirlər.[47] Dixit & Pindyck kapital büdcəsi üçün dinamik proqramlaşdırma istifadə etdi.[48] Dinamik problemlər üçün qeyri-konveksiya bazarda baş verən uğursuzluqlarla da əlaqələndirilir [49] , həmçinin sabit vaxtla bağlı problemlərdə.
İqtisadçılar qabarıq analizi ümumiləşdirən qeyri-yumşaq analiz yolu ilə qabarıq olmayan çoxluqları getdikcə daha çox öyrənirlər. Konveks təhlili güclü fikirlər və aydın nəticələr verdiyi, lakin miqyaslı gəlirlərin artması kimi qabarıqlıqların təhlili üçün uyğun olmayan qabarıq dəstlər və qabarıq funksiyalar üzərində dayanır.[50] "İstehsal və istehlakdakı qeyri-konveksiya ... qabarıqlıqdan kənar riyazi alətlər tələb edirdi və daha da inkişaf etmək üçün qeyri-bərabər bir hesabın icadını gözləmək lazım idi": məsələn, Rademacher teoremindən istifadə edən və Rockafellar & Wets ( 1998) [54] və Morduxoviç (2006),[51] Xana (2008) görə [6]. Brown (1995, s. 1967-1968) "firmaların qiymət qaydaları ilə ümumi tarazlıq analizindəki əsas metodoloji yenilik" "qlobal analiz (diferensial topologiya) və qabarıq analiz kimi qeyri-bərabər analiz metodlarının tətbiqi" olduğunu yazmışdır[7][8][52]
Mordukhovich, Boris S. Variational analysis and generalized differentiation II: Applications. Grundlehren Series (Fundamental Principles of Mathematical Sciences). 331. Springer. 2006. i–xxii and , 1–610. MR 2191745.
Samuelson, Paul A. "The problem of integrability in utility theory". Economica. New Series. 17. 1950. 355–385. doi:10.2307/2549499. JSTOR 2549499. MR 0043436.For the epigraph to their seventh chapter, "Markets with non-convex preferences and production" presenting Starr, (1969), Arrow, Hahn, (1971. səh. 169) quote John Milton's description of the (non-convex) Serbonian Bog in Paradise Lost (Book II, lines 592–594):It will be noted that any point where the indifference curves are convex rather than concave cannot be observed in a competitive market. Such points are shrouded in eternal darkness—unless we make our consumer a monopsonist and let him choose between goods lying on a very convex "budget curve" (along which he is affecting the price of what he buys). In this monopsony case, we could still deduce the slope of the man's indifference curve from the slope of the observed constraint at the equilibrium point.
A gulf profound as that Serbonian Bog
Betwixt Damiata and Mount Casius old,
Where Armies whole have sunk.
Exercise 45, page 146: Wold, Herman; Juréen, Lars (in association with Wold). 8 Some further applications of preference fields (pp. 129–148) // Demand analysis: A study in econometrics. Wiley publications in statistics. New York: John Wiley and Sons, Inc. Stockholm: Almqvist and Wiksell. 1953. xvi+358. MR 0064385.
Koopmans, (1961. səh. 478) and others—for example, Farrell, (1959. səh. 390–391) and Farrell, (1961a. səh. 484), Bator, (1961. səh. 482–483), Rothenberg, (1960. səh. 438), and Starr, (1969. səh. 26)—commented on Koopmans, (1957. səh. 1–126, especially 9–16 [1.3 Summation of opportunity sets], 23–35 [1.6 Convex sets and the price implications of optimality], and 35–37 [1.7 The role of convexity assumptions in the analysis]):
Tjalling C., Koopmans. Allocation of resources and the price system // Koopmans, Tjalling C (redaktor). Three essays on the state of economic science. New York: McGraw–Hill Book Company. 1957. 1–126. ISBN 0-07-035337-9.
Aumann, Robert J. "Markets with a continuum of traders". Econometrica. 32 (1–2). January–April 1964: 39–50. doi:10.2307/1913732. JSTOR 1913732. MR 0172689.
Aumann, Robert J. "Integrals of set-valued functions". Journal of Mathematical Analysis and Applications. 12 (1). August 1965: 1–12. doi:10.1016/0022-247X(65)90049-1. MR 0185073.
Pages 52–55 with applications on pages 145–146, 152–153, and 274–275: Mas-Colell, Andreu. 1.L Averages of sets // The Theory of General Economic Equilibrium: A Differentiable Approach. Econometric Society Monographs. Cambridge UP. 1985. ISBN 0-521-26514-2. MR 1113262.
Theorem C(6) on page 37 and applications on pages 115-116, 122, and 168: Hildenbrand, Werner. Core and equilibria of a large economy. Princeton studies in mathematical economics. Princeton, N.J.: Princeton University Press. 1974. viii+251. ISBN 978-0-691-04189-6. MR 0389160.
Page 628: Mas–Colell, Andreu; Whinston, Michael D.; Green, Jerry R. 17.1 Large economies and nonconvexities // Microeconomic theory. Oxford University Press. 1995. 627–630. ISBN 978-0-19-507340-9.
In Ellickson, page xviii, and especially Chapter 7 "Walras meets Nash" (especially section 7.4 "Nonconvexity" pages 306–310 and 312, and also 328–329) and Chapter 8 "What is Competition?" (pages 347 and 352): Ellickson, Bryan. Competitive equilibrium: Theory and applications. Cambridge University Press. 1994. 420. doi:10.2277/0521319889. ISBN 978-0-521-31988-1.
Page 309: Moore, James C. Mathematical methods for economic theory: Volume I. Studies in economic theory. 9. Berlin: Springer-Verlag. 1999. xii+414. doi:10.1007/978-3-662-08544-8. ISBN 3-540-66235-9. MR 1727000.
Pages 47–48: Florenzano, Monique; Le Van, Cuong. Finite dimensional convexity and optimization. Studies in economic theory. 13. in cooperation with Pascal Gourdel. Berlin: Springer-Verlag. 2001. xii+154. doi:10.1007/978-3-642-56522-9. ISBN 3-540-41516-5. MR 1878374.